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Abstract

Environmental economists have gravitated toward writing empirical papers
with an emphasis on causal inference. Despite this development, there has
not been much progress in adopting an explicit framework for communicat-
ing causal hypotheses based on prior beliefs about the structure of a data gen-
erating process. The shortfall reduces the transparency and accessibility of
the assumptions underlying effect identification and limits the feasibility of
causal hypotheses testing. This article explains why an explicit framework is
worthwhile and demonstrates how Directed Acyclic Graphs can augment and
standardize the communication of causal knowledge.
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A framework for communicating causal knowledge

Most empirical papers in environmental economics today are structured around a sin-
gle statistical inference of interest and written to emphasize how this measurement sup-
ports a causal interpretation (Segerson, 2019). Because causal inference is difficult, au-
thors are rewarded for designing clever identification strategies. It is now the thoughtful
communication of research design that defines “rigor” in empirical papers, rather than a
barrage of regression specification tests (Angrist and Pischke, 2010).

This article considers the clarity, transparency, and testability of causal hypotheses—
prior beliefs about the structure of a data generating process. This is thought to be ad-
dressed when testing a statistical inference’s sensitivity to varying empirical assumptions
about the control variables or functional form used in an analysis, but the exercise in show-
ing consistency across regression specifications is not undertaken with any explicit causal
model in mind. While sensitivity analyses are likely to give researchers confidence in their
results, they are unable to determine whether an approach estimates an effect of interest.

The spirit of specification testing is to determine the credibility of a statement such as
“the effect of 𝑋 on 𝑌 is likely positive.” A test of a result’s sensitivity to an assumption
about a data generating process is suitable to bolster this claim because it tests whether a
researcher is estimating the effect of interest. This change to a causal model will naturally
motivate a specific change in an empirical strategy and highlight a critical prior belief. In
contrast, a purely functional change to a regression specification fails to imply anything
about the correctness of the underlying causal model. In essence, the typical “robustness
test” assumes that the results of the preferred model are always causally interpretable.
When causal models are not explicit, the testing of causal hypotheses becomes impossible.

Directed Acyclic Graphs (DAGs) (Pearl, 1995) systematize the creation and testing of
causal hypotheses. DAGs visually display a researcher’s prior beliefs and assumptions,
motivate identification strategies, and indicate the conditions under which a regression
yields a causally interpretable measurement. They provide a way to choose conditioning
variables, sources of data, and empirical methods in a manner that can be easily under-
stood and validated by a wide audience of researchers, students, and stakeholders. This
article introduces the visualization technique, shows how DAGs can facilitate causal hy-
pothesis testing, assesses the costs and benefits of DAG adoption, and shares econometric
insights unique to DAGs. This article seeks to lower the costs of adoption for an emerging
method of broad applicability in environmental economics.

Several articles compare the DAG framework to competing foundations for presenting
causal information. The potential outcomes (Neyman-Rubin) framework—which quan-
tifies causal effects through comparisons of counterfactuals—is already widely used in
applied economics to validate identification strategies and has the advantage over DAGs
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in terms of the scope of empirical assumptions and conclusions that can be represented
(e.g. monotonicity and the local average treatment effect) (Imbens, 2020). In contrast, the
DAG framework is better at making the historically “ad hoc” facets of causal inference in
economics more transparent and systematic (e.g. covariate selection and the identification
of bias) (Schneider, 2020; Huntington-Klein, 2022). Heckman and Pinto (2022) claim that
the scope of both frameworks is limited in non-empirical settings (e.g. general equilibrium)
and promotes structural equation modeling to address causal questions.

The next two sections provide a primer on DAGs and several applications to illustrate
their utility. The penultimate section demonstrates a review of a recent research article
from the environmental economics literature with the aid of a DAG and describes the limi-
tations of a purely graphical approach. The final section discusses the merits of integrating
this innovation into future presentations, publications, peer reviews, and pedagogy.

A primer on Directed Acyclic Graphs

When constructing a DAG, the initial task is to center thinking around a particular rela-
tionship of interest, e.g. 𝑇 → 𝑌 in Figure 1. Directed arrows like 𝑇 → 𝑌 convey statements
like “the outcome 𝑌 is in part determined by the status of some treatment 𝑇.” Additional
causal relationships between 𝑇 and 𝑌 may be mediated (facilitated) by other variables (e.g.
𝑀). A causal model should explicitly consider any variables which could distort the ob-
served relationship between 𝑇 and 𝑌 away from a causal interpretation. The complexity
of a model is ultimately up to the researcher. Every inclusion or omission of a variable or
arrow marks an explicit assumption about the underlying data generating process.
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Figure 1: A representative DAG. Some variables may not be observable, and related links can be
distinguished with dashed arrows. The use of color is a stylistic preference that aids identification.

Spurious relationships between 𝑇 and 𝑌 are created by “confounding” variables—
those which influence both 𝑇 and 𝑌—like 𝑋 or 𝑄. If the effects of these confounding
variables are not mitigated, an estimate of the treatment effect will be biased. Conversely,
variables like 𝐻 will not influence the causal interpretation of a measured correlation be-
tween 𝑇 and 𝑌, since they do not contribute to a spurious relationship between 𝑇 and 𝑌.
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Thus the DAG provides a way to differentiate between malignant and benign sources of
variation in 𝑌.

Ideally, there would exist some experimental source of variation for 𝑇, because this
would sever any arrows leading towards 𝑇 and yield a causal interpretation of the effect of
𝑇 on 𝑌. But this ideal isn’t necessary. If data on 𝑋 and 𝑄 are available, a simple matching
strategy can control for these confounding variables by including them in a regression.
Regression will automatically isolate the causal relationship between 𝑇 and 𝑌 from the
variation induced by changes in 𝑋 or 𝑄. In the language of DAGs, this “closes” the non-
causal paths between 𝑇 and 𝑌. The DAG does not keep track of the paths that are closed by
a researcher’s analysis—or the paths that remain “open”—it only signals whether a path
is a problem that an identification strategy needs to address.

Sometimes a confounding variable like 𝑄 isn’t observable, but this may not be a prob-
lem if data on 𝑋 are available. This is because of a restriction imposed on the model via
the term “acyclic.” By disallowing loops, DAGs remove the possibility to model bidirec-
tional causal links, but enable statements about conditional independence, e.g. “𝑌 is in-
dependent of 𝑄 conditional on 𝑋.” Since variation in 𝑄 can only impact 𝑌 through an
intermediate effect on 𝑋, controlling for the variation in 𝑋 halts the pass-through of in-
formation from 𝑄 to 𝑌. Thus the requirement for closing a spurious path between 𝑇 and
𝑌 can be relaxed to controlling for a confounding variable—or one of its “descendants”—
along that path. Here, once 𝑋 is controlled for, the status of 𝑄 becomes immaterial in the
identification of the effect of 𝑇 on 𝑌. However, the decision to include 𝑄 (or 𝐻) as control
variables may improve the precision of the 𝑇 → 𝑌 estimate, since their inclusion reduces
the unexplained variation in 𝑌.

Because a DAG is a non-parametric representation of a causal process, it will not rec-
ommend a particular estimation procedure or functional form. For this step, economists
should rely on traditional econometric knowledge. Regardless of specification, when re-
porting regression output, the marginal “effect” on 𝑌 attributable to 𝑇 reflects all remain-
ing open paths from 𝑇 to 𝑌. In the present example, the direct effect cannot be disentan-
gled from the indirect effect, as the “mediator” 𝑀—which facilitates part of the effect of
𝑇 on 𝑌—is unobservable.

The researcher develops a model to determine whether the exploited variation gener-
ates a measurement of a causal effect, and the causal claim relies on an implicit assump-
tion that the DAG accurately models the data generating process. Thus the addition of an
explicit model does not remove the potential for misspecification. However, if someone
disagrees with the model, that person may make changes to the DAG and review whether
the new DAG admits the same identification strategy or a completely different one.
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Applications of DAGs to environmental economics

This section provides evidence that discussions of research design can be made more
clearly and succinctly with a DAG. Despite the simplicity of the following examples, they
are difficult to explain without a DAG, which suggests that DAGs are valuable in augment-
ing understanding for both researchers and other stakeholders.

Bad controls are usually collider variables

Some research design strategies can inadvertently introduce bias to estimators. To
illustrate, the following example concerns the long-run impact of cumulative wildfire
smoke exposure on respiratory health, using hypothetical data from hospital admissions.
Figure 2 provides a model of a data generating process that considers how the sample
is being collected. Because smoke exposure also has negative long-run impacts on im-
mune system health, it increases the likelihood of a hospital visit through a second causal
channel that is unrelated to respiratory health. For clarity, it is assumed that no variables
confound the relationship between smoke exposure and respiratory health.

hospital admission

smoke exposure respiratory health

immune system health

Figure 2: Data collected using a selected sub-sample may fail to yield an internally-valid causal
effect if the data generation itself creates spurious links between treatment and outcome.

Certain variables create spurious correlations between treatment and outcome only
once they are included as controls—or in this case, held constant by the data collection
approach. In the present example, weakened immune system health and weakened res-
piratory health are both sufficient conditions for being more likely to showing up in the
hospital data. But the sufficiency of either condition implies that among hospital admits,
those with poorer immune system health are more likely to have better respiratory health
(and vice versa). This is not a causal claim, but a spurious correlation created by the data
generating process. Since people impacted by wildfires are more likely to have worsened
immune system health than the unaffected, the spurious link will contribute to an under-
estimation of the negative respiratory health effect.

DAGs alert researchers to potential identification pitfalls that would be difficult to ex-
plain without a graphical aid. Whenever a variable invites a collision of two arrows along
a path from treatment to outcome—such as hospital admission here—the variable is called
a “collider.” Controlling for a collider variable—through inclusion in the control set or the
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data collection process—will open an otherwise closed path. The abstraction of the iden-
tification problem to a graphical one makes the detection and discussion of a collider bias
simple. Without the concept of a collider, these biases are easily missed.

A common mistake is to reduce this example to an external validity concern—the ques-
tion of whether the conclusion is valid beyond a particular experiment or sample. How-
ever, the measured relationship between smoke exposure and respiratory health won’t
even be internally valid here. The collider bias will reduce the measured smoke exposure
effect for the hospitalized sub-sample. However, since the second mechanism through
which smoke exposure increases the likelihood of hospital admission is known, an iden-
tification strategy that conditioned on immune system health would close the non-causal
path from smoke exposure to respiratory health, even when the collider is in play. This
allows the estimation of an unbiased respiratory health effect for the hospitalized popu-
lation.

The role of a variable is important

Does adopting an electric vehicle decrease household emissions? The direct effect is
likely positive due to increased mineral extraction and fossil fuel-derived electricity de-
mand. However, the bulk of the adoption effect is likely indirect and negative, through
the replacement of a gas-powered car. As a straw man, consider the economist who con-
trols for the number of gas-powered cars in the household. This would clearly be a mis-
take, because, by controlling for the number of gas-powered cars, the researcher closed
the replacement channel. That is, they have closed a causal path that should have been
left open, as this strategy conditioned on a mediator, rather than a confounder.

But this economist wouldn’t even measure the direct effect with their strategy, given
the understanding of car buying preferences implied by Figure 3. Other relevant house-
hold characteristics will manifest a collider bias when controlling for the number of gas-
powered cars. For example, households with car enthusiasts are drawn to gas-powered
cars and driving more often, both for the sake of leisure. The control variable is a collider
on the enthusiast path—conditioning on the number of gas-powered cars introduces a
spurious correlation between electric vehicle adoption and enthusiasm.

To many environmental economists, the replacement story is probably obvious, al-
though the collider story is likely not. But the recommended solution might be to control
for the total number of cars instead. According to Figure 3, this is also a blunder. In
that causal model, the total number of cars acts as another collider. By stratifying on the
number of cars in the household, it is assumed that there is a one-to-one replacement of a
gas-powered car for every electric vehicle adopted—which is unlikely. Some households
may move from two to three total cars with their adoption, but they will be compared to
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# cars

EV adoption household emissions

# gas-powered cars

car enthusiast

Figure 3: The true impact of electric vehicle adoption on household emissions is only revealed if
controls for the number of cars in the household—gas-powered or otherwise—are omitted.

three [gas-powered] car households instead of two car households. The proposed solution
moves the result from an underestimate to an overestimate of the decrease in emissions.

This model says that controls for the number of gas-powered cars and the number
of total cars in the household should both be avoided. A different setting may imply a
different causal structure than the one in Figure 3. In that case, the no-control strategy can
be re-validated by checking the new DAG for any threats to identification.

Efficient communication of identification assumptions

Fishing quota systems have revolutionized the organization of fisheries, protecting the
biological sustainability of targeted species and increasing the value of an authorized total
allowable catch. In these systems, fishers explicitly own shares of this total allowable catch
and are free to trade these fishing rights among themselves. The market for quota shares
is intended to autonomously guide ownership into the hands of the most efficient fishers,
therefore increasing the economic rents that accrue to each share.

How much of the variation in the price of quota is due to changes in fleet efficiency (i.e.
the amount of fish caught per unit of effort made by the fisher), as opposed to changes in
consumers’ demand for fish? A potential problem with separating these two impacts is
the fact that any market development that increases the value of the quota may addition-
ally incentivize investment that leads to the use of more efficient fishing methods. Figure
4 shows how uncontrolled demand-side factors create spurious relationships when inter-
preting the effect of changes in fleet efficiency on the price of quota.

fish market 
development

gear restriction fleet efficiency price of quota

Figure 4: Given the mental model above, the corresponding DAG reflects the assumptions required
for the gear restriction variable to provide useful variation in fleet efficiency.
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Consider a potential regulation enacted due to concerns about the bycatch (unintended
catch) of an endangered species often found co-mingling with the targeted species, such
as dolphins with tuna. This could manifest as a restriction on a certain type of gear or
fishing location. The restriction reduces the efficiency of the fleet, impacts the value of
fishing quota through this efficiency mechanism, and is independent of shifts in demand.

Figure 4 is consistent with this fishery story, and it suggests using the gear restriction
variable as a solution to the identification problem. The regulation turns fleet efficiency
into a collider variable along the spurious path from gear restriction to the quota price, and
into a mediator on the causal path. Thus an unconditional regression of the price of quota
on the gear restriction variable provides a causally interpretable estimate. A regression
of fleet efficiency on the gear restriction is similarly unbiased. Dividing the two relevant
regression coefficients yields the instrumental variables estimator for the effect of fleet
efficiency on the price of quota—another causally interpretable estimate.

The DAG above reveals the familiar identification assumptions for the instrumental
variables approach—relevance, independence, and validity—by checking for the pres-
ence or absence of three key arrows involving the gear restriction variable. The fishery
story admits an arrow from gear restriction to fleet efficiency (relevance), but not to or
from the price of quota or fish market development variables (validity and independence,
respectively). Figure 4 transparently communicates what is believed to be true about the
instrument, and readers can easily follow (or dispute) these assumptions.

Discovering new methods

The previous section used a DAG to identify multiple links between variables that
could be estimated without bias. The resulting strategy emulated the familiar instrumen-
tal variables approach. But each new DAG structure provides an opportunity to discover
a novel identification strategy that would have otherwise remained hidden. This last ex-
ample illustrates the “random filter” identification strategy (Donovan, 2024) for deriving
an unbiased estimate of a treatment effect amid selection into treatment.

How beneficial are climate resilience-motivated crop insurance programs in develop-
ing nations? The savvier farmers will likely have the most interest in an insurance program
if made available, as well as the most sophisticated farming operations. Any naïve regres-
sion strategy would clearly pick up this selection bias. Figure 5 shows how to remedy
this selection problem. Consider the mechanism through which insurance would lead to
a benefit. If there is no adverse weather event (and thus no insurance claim), then crop
insurance will have no positive impact on income. If the insurance claim variable isn’t
correlated with business savvy, the two links in the chain from crop insurance to income
can be estimated separately, without bias.
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business savvy

crop insurance insurance claim income

Figure 5: When an exogenous mediator exists between treatment and outcome, a researcher can
separately identify the effects of treatment on the mediator and mediator on the outcome, then
scale up the former effect by the latter.

The first link in the causal chain can be identified with a simple regression of insurance
claim on crop insurance. The spurious path from crop insurance to insurance claim is not
an issue, since income assumes the role of a collider and omitting income closes this path.
The second link is identified by regressing income on insurance claim while controlling
for crop insurance to close the other non-causal path. Multiplying these effects together
recovers a causally interpretable estimate of the effect of crop insurance on income.

Figure 5 states three assumptions about this mediator. First, the mediator must in-
tercept all causal paths from crop insurance to income. If another causal path existed
outside of the mediator’s reach, the identification strategy will close that path. The other
two assumptions require the insurance claim variable to have unconfounded relationships
with crop insurance and income. This means the business savvy variable—or any other
unobservable—may not create a spurious path between treatment and outcome that in-
volves the mediator. If these assumptions hold, i.e. if one can genuinely draw the data
generating process as in Figure 5, then the identification strategy above is valid.

The savviest of farmers could potentially mitigate their exposure to weather-related
damages through siting or some other mechanism; this creates a confounding path in-
volving the mediator. In this case, a modification to the DAG presents a more robust iden-
tification strategy. Conditional on the perceived risk of a disastrous weather event, the
event itself (and thus the insurance claim) is now plausibly-exogenous with respect to the
business savvy of individual farmers. Adding a measurable control variable like “risk of
damage” in between the business savvy and insurance claim variables would signal that a
control strategy is available to close the spurious path. A researcher should therefore run
the two aforementioned regressions while controlling for exposure risk.

A DAG-enhanced review of a recent JAERE article

In early July, 2015, the water utility serving the city of Burbank, California sent warn-
ings to households who would be violating upcoming summer irrigation restrictions based
on their behavior in late June. The notices contained details about a new monitoring sys-
tem that used real-time data to automatically inform the utility of irrigation outside of

8



permitted times. This treatment resulted in a tenfold increase in the number of house-
holds ever notified of an irrigation violation—and signaled a change in the likelihood of
enforcement and threat of financial penalties should overuse continue.

West, Fairlie, Pratt, and Rose (2021) reported a substantial decrease in water consump-
tion in response to receiving a notice—roughly 600 gallons per week, or 31% of mean
household use—using a fuzzy regression discontinuity design. Treatment was predomi-
nantly determined by whether a household was found to be non-compliant with upcom-
ing summer restrictions during a week in late June. The noncompliance algorithm counted
the number of days with peak hourly water usage exceeding an arbitrary threshold (by
which point irrigation was evident). Since the summer restrictions only allowed for irri-
gation two days per week, when the third-highest daily peak consumption hour exceeded
125 gallons (hereafter “peak water consumption”), a household would be deemed non-
compliant.

The utility allowed for some leniency for historically efficient customers, so a house-
hold’s peak water consumption crossing the above threshold only implied a jump in the
probability of receiving a warning. The lower-volume customers were instead evaluated
based on their fifth-highest daily peak consumption hour, but this “consumption tier” in-
formation was not available to the research team. The imperfect compliance in treatment
assignment using the stricter rule supported a fuzzy regression discontinuity approach,
detailed below.

other interventions or 
threshold manipulation

above 
threshold

automated 
violation notice

water use

peak water 
consumption

household 
consumption tier

Figure 6: Sketching the DAG consistent with an article’s narrative highlights key assumptions,
barriers to identification, sources of potential bias, and the validity of the identification method.

The nature of the omitted variable bias becomes clearer with the DAG in Figure 6—
drawn to represent the authors’ understanding of the data generating process. Those who
use less water historically would likely continue to do so and not receive a notice, while
the higher baseline households would be treated. The unbalanced treatment and control
groups biases the magnitude of the treatment effect downward.

Figure 6 aids a reviewer in running through the requirements for a satisfactory fuzzy
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regression discontinuity design. The previously mentioned instrumental variables as-
sumptions are conditionally satisfied. Clearly, the instrument—indicating if the stricter
peak consumption threshold is exceeded—partly determines whether a household re-
ceives an irrigation restriction violation notice (it was a necessary precondition). And be-
cause the crossing of the peak consumption threshold is defined entirely by a household’s
peak water consumption, the instrument is independent of the unobserved confounder—
the household consumption tier—after conditioning on peak water consumption. Lastly,
the instrument only impacts household water use through the delivery of a notice.

There are still the assumptions specific to the regression discontinuity approach to
discuss. First, the goal of this regression discontinuity design is to separate the drop in
water use due to receiving a notice from the [increasing] water use trend in the peak wa-
ter consumption variable. Upon controlling for peak water consumption, any paths that
utilize continuous variation in water use across the threshold are closed, leaving only the
potential discontinuity to be measured—as desired.

Second, there shouldn’t be an additional cause for a discrete change in water use when
comparing households just over the threshold to those just below it. For expositional clar-
ity, the “local randomization” assumption is symbolized here by a non-path from the
threshold to the outcome using the bold ‘X’s in Figure 6. Because water use will be re-
gressed on the peak consumption threshold—and not the notice status itself—the authors
hope to attribute the threshold-derived jump in outcomes to the notice, rather than some
other factor. They make this assertion easy to believe, as no concurrent intervention utiliz-
ing the threshold existed (eliminating the arrow from the threshold to a potential interven-
tion mediator), and no households were privy to the threshold or the automated detection
algorithm (eliminating the arrow from a potential sorting confounder to the threshold).

From this discussion, the authors’ fuzzy regression discontinuity approach appears to
generate an unbiased estimate of the effect of the irrigation restriction violation notices on
summertime water use. But the above DAG cannot fully cover the scope of a peer review.
This is discussed below.

DAGs are not the be-all and end-all

It should be clear that DAGs cannot provide a one-to-one mapping to everything com-
monly taught in econometrics classes, and for this reason their main role must be aug-
mentative. For example, Figure 6 cannot suggest a particular implementation of fuzzy
regression discontinuity (two stage least squares, local linear regression, bandwidth, etc.),
and these decisions involve a separate set of assumptions from the causal ones shown by
the DAG. The DAG does provide some guidance, however. As the introduction of this
article establishes, the sensitivity of results to these additional assumptions should be an-
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alyzed across specifications consistent with the same causal model.
Another shortcoming is that a DAG misses nuance relating to the estimate of interest.

In the [common] case of heterogeneous treatment effects, an instrumental variables strat-
egy typically makes use of a monotonicity assumption to show that the approach identifies
a local average treatment effect. The additional reliance on the extrapolation of counter-
factuals in regression discontinuity designs means that this treatment effect is also limited
in scope to settings “close to” the threshold—for instance, in the case of West et al. (2021),
where the peak consumption threshold for notice eligibility is around 125 gallons. The
traditional potential outcomes logic embedded in these statements does not map to any
feature in the graph.

An analysis aided by DAGs will still be subject to model misspecification. Where vari-
ations of functional form may instill a false sense of confidence in an inference’s robust-
ness, a DAG may instill a similar confidence in a causal model. The interpretability of a
result still depends on the accuracy of the causal model—regardless of whether it is ex-
plicitly represented by a DAG. While model correctness remains a strong assumption, the
transparency provided by a DAG admits an opportunity to test it during peer review. A
reviewer can start with a DAG that communicates the assumptions that must hold in order
for the empirical strategy to be successful. If the setting in a paper admits an arrow incon-
sistent with the approach, the reviewer has a reason to be critical. If an author supplies a
DAG that doesn’t seem to match their setting, the reviewer can point this out as well.

Even if environmental economists become more comfortable with the graphical ap-
proach, it is evident that additional discussion outside of the DAG framework will still be
needed in empirical research. And as seen in the primer, certain questions involving non-
recursive (bidirectional) model designs cannot be conveyed via DAGs. These two facts
are occasionally taken as evidence that DAG adoption is impractical (e.g. Imbens (2020);
Heckman and Pinto (2022)), but this extreme view ignores their potential for improving
the communication of causal knowledge in a majority of settings. In reality, nothing is
sacrificed by using a new tool in conjunction with the old ones.

Opportunities for implementation

Identification strategies are often nuanced and developed from a place of deep famil-
iarity with specific data and settings. The inclusion of a DAG increases the comprehen-
sibility of research because it makes the proposed identification strategy clear to others.
This can lead to higher-quality feedback. It is easy to evaluate whether a researcher’s DAG
represents their setting, which allows a reader to suggest whether a variation in the DAG
still admits the use of the proposed identification strategy.
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DAGs provide an opportunity to make the research process more transparent and re-
sponsive to criticism. When reviewers ask for some sort of sensitivity analysis, they can
use the graphical language for raising concerns about causal hypotheses. A new causal
hypothesis generates a modification to a DAG, which then organically motivates a new
regression. This first-principles approach to testing model robustness is more academ-
ically rigorous than suggesting modifications to a regression with language concerning
functional form alone. It matches the spirit of specification testing, which aims to build
confidence that an effect of interest is being measured without bias.

The integration of DAGs in econometrics education creates significant value for ped-
agogy (e.g. Cunningham (2021); Huntington-Klein (2022)). Indeed, graduate studies in
economics already highlight causal effect identification, yet several of the insights shared
in this article are absent from applied econometrics instruction. At the undergraduate
level, DAGs facilitate discussion of research design; for example, the introductory econo-
metrics course at the University of Nevada, Reno attracts a diverse group of students to
economics through its primary emphasis on discussing empirical research. The use of
DAGs increases access to this class and builds on a desirable competency.

That accessibility can be extended to communication with policymakers and stake-
holders. By simplifying explanations of causal effect identification while retaining rigor,
DAGs can elevate a non-expert’s understanding of an empirical approach. Perhaps the
most promising consequence is that lawmakers would have an opportunity to engage with
empirical work more critically, thus reducing reliance on trust as the key mediator for in-
forming environmental policy.
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