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Abstract

We develop a bioeconomic model to identify the cost-effective control of an invasive species (rain-
bow trout) to achieve a population viability goal for an endangered species (humpback chub) in
the Grand Canyon of the U.S. southwest. Solving the population viability problem is difficult
since avoiding a threshold with a given confidence imposes a probabilistic restriction on joint
outcomes (survival) over many periods. We develop a novel dynamic programming solution ap-
proach that is fast and forgoes the simulation method requirement of imposing structure on the
policy function. We also investigate an adaptive management model that incorporates learning
about uncertain biological dynamics.

Keywords— population viability, margin of safety, chance-constrained dynamic pro-
gramming, adaptive management, endangered species conservation, invasive species, value
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1 Introduction

A general class of management problem, both within and outside economics, is con-
cerned with staying above (or below) a particular threshold over time with a specified
margin of safety. Notable examples include safely maintaining endangered species away
from extinction, global temperatures below a maximum increase, and diseases away from
outbreak levels. These examples share two key attributes which make the application of
standard expected net benefit objectives problematic: dynamic uncertainty is central, and
the consequences of crossing the threshold are dire and difficult to quantify. In these cases,
one natural way forward is to substitute a “chance constraint” for consequences—whereby
a threshold is avoided with a given confidence—and focus on minimizing management
costs.

Our application is based in the Colorado River in the U.S. southwest and concerns the
control of an invasive species—rainbow trout (Oncorhynchus mykiss) immediately below
the Glen Canyon Dam—in order to maintain a viable population of an endangered species,
humpback chub (Gila cypha) downstream in the Grand Canyon. Control of rainbow trout
relieves the competitive and predatory pressure on humpback chub. Efficient manage-
ment of interacting invasive and endangered species populations is a pressing conserva-
tion issue (Brown and Shogren, 1998; Lampert et al., 2014). Invasive species are important
drivers of decline for endangered species across the U.S. (Wilcove et al., 1998). Ongoing
invasive species population control is frequently employed as a threat reduction strategy
in endangered species programs, particularly when full eradication is prohibitively costly.
Even if eradication is feasible, in some cases it may not be desirable because the invasive
species provides other benefits (e.g. Lampert et al. 2014). In our setting, rainbow trout
support a valuable recreational fishery below the Glen Canyon Dam (GCD).

We incorporate population viability analysis (PVA), which has been used to identify
threats faced by a population, the risk of population decline, and the probability of meet-
ing a recovery target (Coulson et al., 2001; Rout et al., 2009; Doyen et al., 2012; Pe’er et al.,
2013; Finseth and Conrad, 2014). Optimal management for viability presents unique bioe-
conomic modeling challenges. Rather than focusing on maximizing a measure of social
surplus, conservation objectives for endangered species in this context typically involve
meeting population-oriented targets. In practice, since population dynamics are stochas-
tic, achievement of a target is not deterministic but rather a question of likelihood. Thus
the focus in the decision framework shifts from justifying conservation ends (e.g. economic
value of a species) to achieving conservation goals with a given confidence (e.g. Newbold
and Siikamäki 2009; Sagoff 2009). Such management focused on a critical levels or thresh-
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olds is similar to the logic of safe minimum standards, detailed thoroughly in Margolis
and Nævdal (2008).

Significant economic value is associated with threatened and endangered species (Boyle
and Bishop, 1987; Loomis and White, 1996). Estimated values range from $6 - $95 per
household and are dependent on species abundance and characteristics and type of re-
spondent (Loomis and White, 1996; Kotchen and Reiling, 2000; Richardson and Loomis,
2009). Values for humpback chub in the Colorado River in Grand Canyon National Park
have been estimated through a series of non-market valuation surveys (Welsh et al., 1995;
Duffield et al., 2016). Sampling both regional and national populations, Duffield et al.
(2016) estimated marginal values of $1.75 per U.S. household for a 1% increase in hump-
back chub abundance. While the valuation is substantial, additional information is re-
quired for decision making since the marginal value almost certainly increases drastically
as the population declines.

Previous work involving the economic cost of species conservation plans has focused
either on direct conservation costs or opportunity costs, e.g. from forgone revenues from
the working landscape. Montgomery et al. (1994) develop a cost curve for the probability
of spotted owl survival, and analyze the trade-offs between timber sector revenues and
increased species survival. Haight (1995) balances site use for conservation or timber by
maximizing timber revenues while meeting a viability target over a given horizon for a
species. Marshall et al. (2000) simulate the population response of Kirtland’s warbler to
timber rotation length. They then seek to minimize timber revenue losses with respect to a
viability goal, using the distributions found during simulation. Finseth and Conrad (2014)
focus on minimizing the direct costs of conservation (transporting species or constructing
habitat) for the red-cockaded woodpecker.

This work also relates to the literature on applying viability theory to sustainable renew-
able resource management, which involves meeting a combination of biological, economic
and social constraints (Oubraham and Zaccour, 2018). Viability problems share many of
the same features found in optimal control (dynamically evolving states subject to control)
but lack a traditional objective function (e.g. profit) to be optimized. The key objects of
interest in viability theory are often sets, the most salient being the viability kernel, a subset
of the initial state-space that admits a viable solution path that meets constraints, either
with certainty or with a given confidence. In the analysis to follow, we derive the least-cost
policy to maintain a system within a [stochastic] viability kernel. For further discussion of
this literature see De Lara and Doyen (2008), Baumgärtner and Quaas (2009), Doyen and
De Lara (2010), and Oubraham and Zaccour (2018).

In this paper we illustrate a new chance-constrained dynamic programming solution
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approach to the species viability management problem, which is also applicable to the
broader class of joint-chance constraint problems. Because the chance constraint is condi-
tional on joint probabilistic outcomes over many periods, it is non-linear and notoriously
difficult to handle. One common approach is to use simulation. For example, Bair et al.
(2018) solve for the cost-minimizing policy to achieve viability of an endangered species
over a given time horizon with a specified confidence. This involves generating a large
block of simulations for every candidate policy in a large set. Thus, it is computationally
expensive and necessarily imposes parametric structure on the policy function.

Multiple authors have addressed the problem using a hybrid, simulation-programming
approach. Haight (1995) uses a large block of stochastic simulations to evaluate whether
the viability constraint is satisfied under a given action sequence. This constraint is en-
forced using a penalty function (violation of the constraint generates a high cost and is
thus avoided). Conditional on a starting state, Haight uses nonlinear programming to
identify the optimal harvest action (at one to three time points). While successfully ad-
dressing the chance constraint, this approach relies on simulation, solves only for a single
starting state, and requires particular care to avoid convergence to local optima. Finseth
and Conrad (2014) also apply a simulation-programming hybrid but in the opposite or-
der. First they solve the viability problem using dynamic programming but for a deter-
ministic population target sought by the end of the time horizon, again enforced via an
arbitrarily chosen penalty function. They then use simulation ex post to explore the effect
of stochasticity on population performance relative to the target. While the application
of dynamic programming reliably optimizes over a range of potential states, the solution
and full treatment of uncertainty are separated.

In this paper we implement a solution approach to the species viability problem that
integrates uncertainty in the dynamic programming solution from start to finish. The dy-
namics and optimal policy endogenously determine the distribution of population out-
comes. We use a penalty approach to address the constraint. Instead of applying the
penalty on violation of the probabilistic constraint, we apply the penalty conditional on
hitting the undesirable threshold itself. We solve for the penalty that is just severe enough
to achieve satisfaction of the manager’s probabilistic viability goal. Thus the penalty level
is determined endogenously. This method generates additional economic intuition for
the viability problem by returning an estimate of the shadow value of failing to avoid
the threshold, i.e. the economic loss—implied by the chance constraint—associated with
crossing the threshold. Relative to the simulation-only solution approach, our method
does not require any policy functional form assumptions. Since no simulations are re-
quired the method is fast. Our approach is most similar to two recent applications. Ono
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et al. (2015) consider a joint chance constraint problem of safely landing a rover on Mars
without hitting obstacles. However, while Ono et al. simplify (linearize) the key constraint
to ease the solution, we maintain the original. Alais et al. (2017) solve for the optimal man-
agement of a hydroelectric dam amid competing generation and recreation values without
simplifying the key constraint. Our solution approach also incorporates the unsimplified
constraint but is less computationally intensive and holds more generally over the state
space as detailed in Section 4.

Using data on rainbow trout control measure effectiveness and population dynamics
from long-term study at the U.S. Geological Survey, Grand Canyon Monitoring and Re-
search Center (Yackulic et al., 2014; Bair et al., 2018; Yackulic et al., 2018), we solve for
the cost effective rainbow trout removal policy which achieves a given humpback chub
viability goal. We find that the resulting policy rule is a non-linear function of the popu-
lation of both species, a form that is not obtainable with a standard, parsimonious para-
metric model (as commonly used in simulation-based solution methods). The resulting
estimated distribution of population states under optimal management is maintained far
above the threshold of interest in order to achieve the stated margin of safety. The cost of
the optimal program is significantly less than that from previous analysis of the problem
using a simulation-based method (Bair et al., 2018).

In our analysis, we provide new intuition on the scale of economic loss associated with
a population falling below a given threshold that is implied when managers assert a given
viability goal. We show how this “current” shadow value of violating the threshold propa-
gates to nearby states as a “present” shadow value (the discounted, probability-weighted
value of falling to the threshold). The likelihood of deteriorating to a non-viable popu-
lation increases as the population state degrades, and thus so does the present shadow
value. In a relatively safe state, non-viability is not an immediate issue and the present
shadow value is low.

After our baseline analysis, we extend the model to incorporate uncertainty in a cen-
tral parameter and the opportunity to reduce this uncertainty with learning. The speed of
the dynamic programming solution method allows us to explore the implications of [re-
ducible] parametric uncertainty. We focus on the impact of rainbow trout on humpback
chub, which is imperfectly understood. We consider an adaptive management scenario in
which the manager learns (imperfectly) about the true nature of this relationship. This in-
formation arrives exogenously in a manner consistent with previous and planned research
on these species.1 To our knowledge, optimal adaptive management in joint-chance con-

1This type of learning and response is known as passive (versus active) adaptive management. In the
passive case, the manager does not seek to optimize over the level and timing of learning but rather simply
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strained problems has yet to be studied. See LaRiviere et al. (2018) for a general review of
uncertainty and learning in natural resource management and a focused discussion of the
economic value of reducing environmental uncertainty.

In our results we decompose the value of learning into two components. First, a pre-
learning “prospective” value arises from the anticipated arrival of new information, al-
lowing for a temporary relaxation of control policy (shifting costly action into the future).
Second, a post-learning “congruity” value stems from less error in optimal management,
as beliefs are more closely related to the truth. We find that the value of information
reduces the expected present cost of the optimal policy by up to 20%, and is relatively
invariant to the starting state.

2 The Humpback Chub Management Program

2.1 Humpback Chub

The focus of this study is on managing interactions between adult rainbow trout (de-
fined as greater than 300 mm in length) and juvenile humpback chub (defined as between
40 and 99 mm in length) in the Colorado River (mainstem) near its confluence with the
Little Colorado River (LCR) in Grand Canyon National Park as depicted in Figure 1. Adult
rainbow trout eat and compete with juvenile humpback chub lowering survival and, to a
lesser extent, growth rates of juvenile humpback chub (Yard et al., 2011; Ward et al., 2016;
Yackulic et al., 2018). Both species migrate into this area after spawning elsewhere in the
system—humpback chub in the lower 13.6 km of the LCR and rainbow trout further up-
stream in the mainstem. Humpback chub rear in both the LCR and mainstem and all size
classes can be found in both rivers, however, the size of an adult humpback chub popu-
lation that can be supported by rearing in the LCR alone is insufficient to meet manager’s
adult humpback chub abundance goals (Yackulic et al., 2014). Rainbow trout were intro-
duced, and now naturally reproduce, in the tailwater that was created in the 25 kilometers
(km) below GCD. Some portion of rainbow trout produced in the tailwater move down
into upper Marble Canyon, and an even a smaller portion of these recruits eventually
make their way down to the confluence of the mainstem and LCR, 125 km downstream
from GCD (see Korman et al. 2012, 2015 for more details).

In this study we focus on population dynamics in the mainstem of the Colorado River
around the confluence with the LCR. Regular monitoring of humpback chub and rainbow

anticipates and incorporates new knowledge as it arrives exogenously to improve decisions (LaRiviere et al.,
2018).
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trout occurs in the Juvenile Chub Management Reach (JCMR), a 3 km reach just below the
mainstem-LCR confluence. Estimates from this reach are intended to inform triggers for
management actions, including the removal of rainbow trout (Yackulic et al., 2014). Figure
1 displays both the confluence of the two rivers, as well as the approximate extent of the
humpback chub population and monitoring reaches (Yackulic et al., 2014).
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Figure 1: Geographic area of interest. Glen Canyon Dam (GCD) on the Colorado River
(mainstem) is located in northern Arizona (upper right panel). The rainbow trout fishery
below GCD extends 25 kilometers to Lees Ferry and rainbow trout disperse 125 kilome-
ters downstream to the confluence of the mainstem and Little Colorado River (left panel).
The locus of management is the confluence where rainbow trout and the humpback chub
aggregation overlap (lower right panel).

2.2 Management Methods

The primary management tool available to managers to aid humpback chub is to me-
chanically remove rainbow trout in the management reach using electro-fishing techniques.
Given the remote nature of the the confluence between the mainstem and the LCR, re-
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movals can be costly. Moreover, the area is considered sacred by many local Native Amer-
ican tribes, some of which object to removals. For these reasons, an optimal policy would
make sparing use of removals, while also maintaining the chub population above a thresh-
old level.

While biological models of humpback chub used in the system frequently consider
multiple size classes in addition to the juvenile size class, we collapse all sub-adult and
adult age classes into an “adult chub equivalent”.2 Managers are interested in maintaining
an aggregate adult chub abundance in the mainstem above 5,000 adult humpback chub
(>200 mm). Over space, this aggregate adult chub population is split between the LCR and
mainstem. Our focus is on the mainstem, the portion of the population that is impacted
by rainbow trout. Converting the abundance goal from adult to “adult equivalent’’ and
accounting for our focus on the confluence of the mainstem and LCR, we are concerned
with staying above a threshold of population of 4,000 residing in the mainstem.3 For the
remainder of the paper, we simply use humpback chub population or level to signify the
adult chub equivalent in the mainstem.

3 Baseline Model

The viability goal is to maintain the chub population level (𝑌) above a viability thresh-
old (𝑌 = 4, 000) over a given time horizon (𝑇 = 20) with a given level of confidence
(𝛥 = 90%). The optimization problem involves selecting the level of trout control (𝐴)
based on the population of trout (𝑋) and chub to achieve the viability goal at the lowest
expected present cost. The decision-maker’s viability horizon of 𝑇 years is nested in an
infinite horizon optimization problem since as time advances we continue to be concerned
with survivorship over the next 𝑇 years. The problem below characterizes a unique opti-
mal solution, one that traces out a policy function detailing the “best” action 𝐴(𝑋, 𝑌) for
any combination of trout and chub.

The optimal policy minimizes the expected present cost of trout control such that our

2Chub age classes include two sub-adult classes (100 mm -149 mm; 150 mm - 199 mm) and two adult
classes (200 mm - 249 mm; 250+ mm). We use an average survival rate based on the two adult size classes
and apply expected sub-adult growth and survival to transition juveniles to adult equivalents.

3Maximum likelihood estimates of survival, growth and population size structure from Yackulic et al.
(2014), suggest that in the mainstem 𝑌 “adult equivalents” equate to 0.75𝑌 adults. If we make the further
assumption that 2,000 adults are always present in the LCR portion of the population, then adult equivalent
can be mapped to an aggregate abundance, 𝑁, using the equation: 𝑁 = .75𝑌 + 2000.
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joint chance constraint (or viability goal) is satisfied over the time-horizon 𝑇:

min
{𝐴𝑡}

∞
𝑡=0∈𝒜

𝐸 ⎡⎢
⎣

∞
∑
𝑡=0

𝛿𝑡𝐶(𝐴𝑡)⎤⎥
⎦

(1)

s.t. 𝑃𝑟
⎧{
⎨{⎩

𝑇
⋂
𝑡=1

𝑌𝑡 > 𝑌
⎫}
⎬}⎭

≥ 𝛥. (2)

The contemporaneous cost is given by 𝐶(𝐴𝑡) = 𝑐𝐴𝑡, where 𝑐 is the cost per removal trip.
Within a year, each additional trip removes a lower absolute number of trout since trips
already completed in the season leave fewer trout to target. Because the season suitable
for control is limited, the number of removal trips is selected from the bounded set 𝒜 =
{0, 1, ..., 6}.

Our biological model primarily follows previous biological and bioeconomic analyses
in this system (Bair et al., 2018; Yackulic et al., 2014, 2018). Population dynamics for the
mainstem adult trout (𝑋) and chub (𝑌) stocks are given by

𝑋𝑡+1 = (𝑋𝑡 + 𝑥𝑡) ⋅ 𝑠𝑋(𝐴𝑡) ⋅ 𝛾, 𝑋𝑡 ≥ 0 (3)

𝑌𝑡+1 =
⎧{
⎨{⎩

𝑌𝑡 ⋅ 𝜂 + 𝑦𝑡 ⋅ 𝑠𝑌(𝑋𝑡), 𝑌𝑡 > 𝑌
𝑌, 𝑌𝑡 ≤ 𝑌,

⎫}
⎬}⎭

, (4)

where a chub population that falls below the viability threshold (𝑌) is considered “col-
lapsed.” Natural annual survivorship shares for trout and chub are given by 𝛾 and 𝜂,
respectively. The stochastic recruitments to each stock, 𝑥𝑡 and 𝑦𝑡, are drawn from the fol-
lowing distributions

𝑥𝑡 = 𝜓𝑋 ⋅ exp (𝜀𝑋
𝑡 ) , 𝜀𝑋

𝑡
iid∼ unif(𝛼𝑋, 𝛽𝑋), (5)

𝑦𝑡 = 𝜓𝑌 ⋅ 𝜀𝑌
𝑡 , 𝜀𝑌

𝑡
iid∼ unif(𝛼𝑌, 𝛽𝑌). (6)

The functions 𝑠𝑋(𝐴𝑡) and 𝑠𝑌(𝑋𝑡) give post-removal survival of trout and survival of
juvenile chub as a function of the rainbow trout abundance, respectively:

𝑠𝑋(𝐴𝑡) = (1 − 𝜃)𝑝⋅𝐴𝑡 , (7)

𝑠𝑌(𝑋𝑡) = (logit−1(𝜇 + 𝜆𝑋𝑡))
12

. (8)

Parameter descriptions, values, and sources are given in Table 1. A timeline summarizing
the dynamics reflected in Equations 3 and 4 is given in Appendix A.

Parameters are estimated using data collected at the Juvenile Chub Management Reach
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and the LCR (Yackulic et al., 2014). We make some important adjustments, as past simulation-
based modeling efforts used a monthly timestep and a more finely resolved population
model (Bair et al., 2018). For example, in the trout survivorship Equation 8, monthly sur-
vivorship is converted to annual using an exponent of 12.

Table 1: Variable and parameter definitions with values and sources.

State and Choice Variables

𝑡 timestep (annual)
𝑋𝑡 population of trout at time 𝑡
𝑌𝑡 population of chub at time 𝑡
𝐴𝑡 number of removal trips at time 𝑡

Parameter Description Value Source

𝛼𝑋, 𝛽𝑋 stochastic trout recruitment bounds 11,14 Korman et al. (2012)
𝛼𝑌, 𝛽𝑌 stochastic chub recruitment bounds 4000, 35000 Interior (2016)
𝜓𝑋 trout outmigration rate to JCMR4 0.0035 Korman et al. (2015)
𝜓𝑌 share of chub recruits to JCMR5 0.1 Yackulic et al. (2014)
𝛾 trout survival after natural mortality 0.61 Korman et al. (2015)
𝜂 adult chub survival after natural mortality 0.83 Yackulic et al. (2014)
𝑐 cost of each trout removal trip $75,000 Bair et al. (2018)
𝑝 passes per trip 5 Bair et al. (2018)
𝜃 removal efficacy 0.011 Korman et al. (2012)
𝜇, 𝜆 trout viability effects (monthly) 5, -0.0009 Yackulic et al. (2018)
𝑇 viability time horizon 20 years Interior (2016)
𝛿 discount factor 0.97 Chosen
𝑌 lower abundance limit of chub 4000 Chosen
𝛥 viability confidence 0.90 Chosen

4 Dynamic programming with a joint chance constraint

The manager’s problem, specified in Equations 1-2 above, is to minimize the present
expected cost of trout removal over an infinite horizon, given a finite-horizon viability
(abundance) goal. In dynamic programming, the optimal policy is often found via value
function iteration (VFI, see e.g. Judd 1998). Our policy of interest, 𝐴(𝑥, 𝑦), is one that

4More specifically, outmigration is calculated as (migration share) ⋅ (1-year survival) ⋅ (arrival in JCMR).
5Similarly, (migration share) ⋅ (1-year juvenile survival).
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motivates the fixed point of the Bellman equation

𝑉(𝑋𝑡, 𝑌𝑡) = min
𝐴𝑡∈𝒜

cost of current removals
⏞𝐶(𝐴𝑡) +𝛿 ⋅ 𝐸𝜀[𝑉(𝑋𝑡+1, 𝑌𝑡+1)|𝐴𝑡, 𝑋𝑡, 𝑌𝑡]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

expected cost of future removals
(9)

s.t. 𝑃𝑟
⎧{
⎨{⎩

𝑡+𝑇
⋂
𝑡

𝑌𝑡 > 𝑌
⎫}
⎬}⎭

≥ 𝛥. (10)

This problem is also subject to population dynamics specified in Equations 3-8, which we
suppress here for simplicity.

To our knowledge, there is no direct solution to the dynamic programming problem ex-
pressed above. Straightforward application of VFI is not feasible due to the viability goal,
which imposes a joint chance constraint spanning outcomes over the viability horizon
(𝑇). Concretely, the manager is concerned with the likelihood of avoiding the population
threshold jointly across 𝑇 periods over which risk may be traded off for cost-effectiveness.

The difficulty imposed by this multi-period, non-additive constraint has led many
modelers to use Monte Carlo simulation to solve the optimization problem (e.g. Bair et al.
2018). However, this approach carries two significant drawbacks. First, simulation meth-
ods are time-intensive and only converge to the optimal policy if it happens to be consid-
ered in the set of candidate solutions. More critically, simulation requires a modeler to
specify a particular functional form for the policy function. For example, to allow for the
simplest non-linear policy function—a quadratic defined over chub population levels—
would involve generating a large block of simulations for each candidate parameter triplet.
As one might expect (and as we show in our results) the optimal policy is unlikely to nicely
follow a quadratic form. Furthermore, we are interested in solving the problem condi-
tional on more than just the chub population level; the state of trout as a chub predator is
also of central concern. However, to parametrically capture a second state variable would
entail a second set of policy parameters (and chub-trout state interaction terms). Such
a brute force grid search over seven or more dimensions of the policy parameter space
would be computationally prohibitive.

As we note in the introduction, others that have used programming methods for such
problems have made a number of simplifications. For example, Ono et al. (2015) solve
the above problem by linearizing the chance constraint using Boole’s inequality, therefore
allowing for a Lagrangian approach. In our framework this would entail removing the
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“joint-ness” in Equation 10. Boole’s inequality gives us

1 − 𝑃𝑟
⎧{
⎨{⎩

𝑡+𝑇
⋂
𝑡

𝑌𝑡 > 𝑌
⎫}
⎬}⎭

= 𝑃𝑟
⎧{
⎨{⎩

𝑡+𝑇
⋃
𝑡

𝑌𝑡 ≤ 𝑌
⎫}
⎬}⎭

≤
𝑡+𝑇
∑

𝑡
𝑃𝑟(𝑌𝑡 ≤ 𝑌). (11)

Ono uses the right-hand side of Equation 11 to form a new constraint,

𝑡+𝑇
∑

𝑡
𝑃𝑟(𝑌𝑡 ≤ 𝑌) ≤ 1 − 𝛥. (12)

Inequalities 11 and 12 imply that our original constraint will also be met. The optimal
policy to this new problem, Equations 9 and 12, is more conservative than the original
under the constraint in Equation 10 (Ono et al., 2015). This results in a more costly-than-
necessary policy and forces a departure between the “true” dynamics of the system and
that of the model.

Our solution approach is summarized in the modified dynamic programming problem
in Equations 14-16. To overcome the challenge presented by the joint chance constraint,
we impose an estimable “penalty” (𝛺) in value terms that is incurred by the manager if the
chub population falls to the threshold level (𝑌). Once reached, the threshold population
level is treated as irreversible (see Equation 4), thus the penalty is conceptualized as the
present value perpetuity cost of having violated the threshold. This provides incentive for
the manager to take costly action to avoid the threshold.

Once the optimal policy is found for any particular penalty, 𝐴(𝑥, 𝑦|𝛺), we assess the
“risk-to-go” function (Ono et al., 2015),

𝑟(𝑋0, 𝑌0|𝐴(𝑥, 𝑦|𝛺)) ∶= 1 − 𝑃𝑟
⎧{
⎨{⎩

𝑇
⋂
𝑡=1

(𝑌𝑡 > 𝑌)|𝑋0, 𝑌0, 𝐴(𝑥, 𝑦|𝛺)
⎫}
⎬}⎭

, (13)

which designates the probability of hitting the chub population threshold given an initial
state, policy function 𝐴(𝑥, 𝑦), and time horizon, 𝑇 (see Appendix C for details on calcu-
lation). We iterate over penalty levels until solving for the lowest penalty that induces
the manager to meet (or exceed) the viability goal (𝑟(⋅) ≤ 1 − 𝛥) everywhere it is feasible.6

This feasible region is commonly referred to as the [stochastic] viability kernel in the viable
control literature, (see De Lara and Doyen (2008) and Oubraham and Zaccour (2018)). Ap-
pendix B details the application of our penalty function method to the PVA problem. In

6As an alternative we could solve the model to meet the viability goal from a given point in the state
space (as opposed to everywhere it is feasible). However, this policy would not be stationary but rather
would have to be re-solved for each new point in the state space that is reached.
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summary, we solve the dynamic programming problem given by

𝑉(𝑋𝑡, 𝑌𝑡) = min
𝐴𝑡∈𝒜

cost of current removals
⏞𝐶(𝐴𝑡) +𝛿 ⋅ 𝐸𝜀[𝑉(𝑋𝑡+1, 𝑌𝑡+1)|𝐴𝑡, 𝑋𝑡, 𝑌𝑡]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

expected cost of future removals
(14)

s.t. 𝑉(𝑋𝑡, 𝑌) = 𝛺, (15)

𝑟(𝑋𝑡, 𝑌𝑡) ≤ 1 − 𝛥. (16)

For any generic penalty, the resulting policy function will be cost-effective. However,
there exists a unique minimum penalty that “just” motivates enough action to satisfy the
viability constraint. In addition, this penalty provides a “current” shadow value of the
viability constraint. The penalty detailed above (𝛺) represents the cost of crossing the
threshold implied by the viability objective. While the current value of the penalty is actu-
ally incurred only at the non-viable population level, the expected present cost of incurring
the penalty, or “present” shadow value, propagates in the value function to neighboring
states, which are undesirable given their proximity to the threshold and the penalty in-
curred there, thus providing an incentive to avoid degraded population levels:

𝜔(𝑋0, 𝑌0) = 𝛺 ⋅
∞
∑
𝑡=0

𝛿𝑡 ⋅ 𝑃𝑟(𝑌𝑡+1 ≤ 𝑌|𝑋𝑡, 𝑌𝑡 > 𝑌). (17)

In other words, 𝜔(𝑋0, 𝑌0) represents the “pain” of potentially realizing the undesirable
threshold outcome, propagated out to nearby states depending on how risky they are.
The probability, 𝑃𝑟(⋅), represents the marginal probability of reaching the threshold for
the first time in period 𝑡 + 1 (i.e. 𝑌𝑡 > 𝑌), given trout and chub levels in period 𝑡. This
probability, multiplied by the discounted penalty, characterizes the marginal contribution
to the present shadow value at the given state.

The present shadow value in Equation 17 emerges from the dynamic programming
solution without actually computing the right hand side of Equation 17. As described
above, we impose the penalty solely at the threshold and allow it to propagate across
the state space via the VFI solution process. After calculating the value function, we can
difference out the expected present cost of implementing the optimal level of control. This
difference gives us the present shadow value in dollar terms at any given time 𝑡 = 0 state:

𝜔(𝑋0, 𝑌0) = �̃�(𝑋0, 𝑌0) − 𝐸 ⎡⎢
⎣

∞
∑
𝑡=0

𝛿𝑡𝐶 (𝐴𝛺(𝑋𝑡, 𝑌𝑡))⎤⎥
⎦

(18)

In our numerical application we verify that the implicit calculation in Equation 18 pro-
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duces the same values as the explicit expression in Equation 17.
The present shadow value plays the same role of the penalty function seen in other

approaches, as it incentivizes the avoidance of an undesirable state, however, like our re-
sulting population outcomes it is also endogenously determined within the model. Thus
we avoid the common ad-hoc assumption pertaining to the penalty function’s form, usu-
ally a linear or quadratic function with arbitrarily defined parameters. In our case, neither
of these forms can sufficiently “fit” the non-parametric result.

The approach of Alais et al. (2017) is quite similar to ours. In contrast to the model
above, they use a more-familiar Lagrange multiplier approach that directly penalizes a
violation of the chance constraint itself (i.e. any distance between the expected likelihood
of avoiding the threshold and the target confidence level). Like us, they first “choose” a
penalty and then solve the dynamic programming problem given that value, iterating on
the penalty until the chance constraint binds. While the approach of Alais et al. (2017)
is elegant and clear advance over earlier approaches there are two key limitations. First,
their algorithm solves only for a single starting state. We solve for the optimal policy
simultaneously across all states. Second, Alais et al. (2017) solve for a fixed (non-rolling)
horizon such that after stepping one period ahead, viability over the next 𝑇 years is not
assured.7 Furthermore, by period 𝑇 − 1, the policy is only concerned with viability over
a single period. In contrast, our “rolling window” implementation of the finite-horizon
chance constraint ensures that for every time period (e.g. the current year, next year, etc.)
the chance constraint is always satisfied over the ensuing 𝑇 periods. Additionally, their
solution approach involves higher computational burden. For a given penalty level, their
risk-to-go function must be calculated for every potential policy during their optimization
step. We need calculate ours only once, post-optimization, conditional on the optimal
policy. Finally, the optimal penalty in Alais et al. (2017) provides economic intuition about
the constraint, but only for a particular starting state. Insight from the penalty term in our
model holds across state space within the viability kernel.

5 Results

5.1 Optimal Policy and Population Outcomes

We present the optimal policy function, mapping any point in the state space to a level
of control, in Figure 2A. Here we consider 100 trout and chub states each, for a total of

7Of course the model can be resolved in the next period. However, for this approach to be fully optimal
such policy updating would need to be acknowledged in expected dynamics, which is not straightforward.
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10,000 possible states. Superimposed on the policy function are two additional pieces of
information. First, the dashed line stretching from the top left to the right bisects the re-
gion where meeting the joint chance constraint is feasible (below) and not feasible (above)
under both a policy of maximum action everywhere and the equivalent (in viability terms)
optimal policy, depicted here. This feasible region is commonly referred to as the viabil-
ity kernel (De Lara and Doyen, 2008). Second, the concentric curves show level sets of the
density function after 20 years under the optimal policy, a density which is shown in full
in Figure 2B. The level sets lie at cumulative densities of 10%, 25%, and 50% respectively
as they expand out from the mode at (𝑥, 𝑦) = (1400, 7400). The fan-shaped region in the
upper right of Figure 2A is defined in the caption and discussed further below.
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Figure 2: Panel A shows the policy function (underlying shading) indicating how many
mechanical removals of trout are optimal in a year given the current populations of trout
(horizontal axis) and chub (vertical axis) in the management reach. The dashed line span-
ning the figure from left to right delineates the upper boundary of the viability kernel.
The fan-shaped region in the top right indicates states at which the chub population de-
clines to the threshold with certainty. Panel B depicts the joint density of chub and trout
levels after 20 years under the optimal policy. The concentric curves in panel A represent
level sets of the joint density from panel B, centered at the mode and depicting cumulative
densities of 10%, 25%, and 50%. (Chub level = adult chub equivalent population in the
mainstem.)

As expected, maximum possible control (six removal trips) is optimal at very low levels
of chub. Maximum control is also ideal at very high levels of trout, unless the chub pop-
ulation is very high. When chub are abundant and/or trout are less abundant (towards
the bottom-left), the optimal policy specifies no action.
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Currently, in the mainstem the population of chub at around 12,000 is very strong8

while trout levels are very low (approximately 100) (Korman and Yard, 2017; Yackulic et al.,
2018). Here the optimal policy prescribes no action. This locus is also safely within the
feasible region (below the spanning dashed line), indicating that current conditions for the
chub are not dire. This finding is in agreement with Bair et al. (2018)—who set removal
triggers based on trout abundance alone—and consistent with removal triggers set in a
U.S. Fish and Wildlife Service Biological Opinion (Interior, 2016). However, we illustrate
how ideal management should be sensitive to evolving joint chub-trout populations rather
than solely trout (Bair et al., 2018). Our analysis suggests that cost-effective control can
maintain a viable population. Even so, the possibility of transitioning north of the dashed
line (and eventually to the threshold) is precisely what drives the optimal level of action
depicted in Figure 2A, even at a substantial distance below this line.

Recall that when population levels lie outside of the viability kernel (above the span-
ning dashed line), it is not feasible to meet the joint chance constraint with the specified
confidence. In Figure 2A we have assumed that maximum action would still be applied
in this circumstance. However, in this region managers would have a strong incentive to
expand the set of management options beyond what is modeled in our analysis. This is
especially true in the top-right of Figure 2A where the fan-shaped area delineates a re-
gion in which populations are so extreme that the resident chub population will fall to
the threshold level with certainty, even under maximum trout control. Fortunately, both
current populations levels and the population density at the end of the viability horizon
are safely to the southwest of this zone.

Because the policy function depicted in Figure 2 is represented by a lookup table, we
avoid imposing a specific functional form. We find that the optimal policy function is
non-linear in both trout and chub population levels and also exhibits a clear interaction
between these two state variables. Given the nonlinearity, interaction, and relatively rapid
transition from minimum to maximum action in the state space, this function would be
difficult to represent in a parsimonious parametric model, especially before this general
shape is even identified. This illustrates an advantage of the dynamic programming ap-
proach used here relative to simulation-based solution techniques that require a functional
form assumption.

In Figure 2B we show the state space density—characterizing the joint likelihood of
chub and trout levels—after 20 years under the optimal policy. Although such a density
depends on the starting chub-trout population for shorter time ranges, we find that after

8Approximately 11,000 aggregate adults correspond to 12,000 adult equivalents in the mainstem (Yack-
ulic et al., 2014)
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20 periods any dependence on any starting state (in the feasible region) is visually imper-
ceptible. The threshold level of chub the manager seeks to avoid lies at the lowest shown
level of chub, along the top of both panels in Figure 2. To avoid this threshold, the man-
ager maintains the chub stock fairly far away from this minimum, typically in the 6,000
to 8,500 range.9 Likely population levels are much safer than the level specified by the
viability goal: the risk-to-go, 𝑟(⋅), is much lower than 1 − 𝛥 in most of the feasible region.
See Appendix C for a full plot of the risk-to-go function.

The density in Figure 2B arises from a combination of stochastic population dynamics
and policy responses. In the southwest region, under zero control, the joint population
will tend to the northeast, i.e. increasing trout and then declining chub states. This move-
ment will bring the population into a zone of active control which will first push expected
trout levels down (to the west) which then then leads to expected expansion in the chub
population (to the south).

5.2 Shadow Value

In the baseline specification of our model described above, we find that the penalty for
hitting the threshold that is just sufficient for inducing the manager to meet the viability
constraint wherever feasible is 𝛺∗ = $380M. Under our discount rate of 3% this is equiva-
lent to an annual perpetuity penalty (cost) of $11M, which significantly exceeds the annual
cost of maximum action ($450K). The intuition of our solution approach is that in order to
justify the action necessary to meet the viability goal wherever feasible, the manager acts as
if the one-time cost of hitting the threshold level of chub is $380M (or, equivalently, $11M
per year forever). We would not necessarily expect this figure to match a non-market val-
uation of this degraded population level. Rather it is the valuation that is consistent with
the given viability goal. It does provide the basis for an important check: while absolute
valuation for a particular species may be costly to conduct, a simpler (and useful) question
is whether the “actual” value lies demonstrably above or below the implicit value that is
consistent with the viability goal. If above, then the policy identified here is economically
justified (at minimum).

As described in Section 4, the penalty (current shadow value) associated with hitting
the threshold propagates across the state space conditional on the optimal policy and the
stochastic dynamics. To illustrate this, in Figure 3 we show the value function decom-
posed into two components: (1) the expected present cost of optimal control, EPC and (2)
the present shadow value function, 𝜔(𝑋0, 𝑌0). The figure shows variation in these com-

9After 20 years under the optimal policy, the mean population levels for trout and chub, respectively,
are (1700, 7400) with standard deviations of (700, 1300).
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ponents of the value function over chub levels given the trout population is fixed at its
modal level under the optimal policy. Mathematically, the present shadow value compo-
nent is equal to the present expected penalty, i.e. the penalty from hitting the threshold
diminished by both discounting and less-than-certain chance of hitting the threshold. As
shown in Figure 3, at low chub levels this present shadow value rapidly expands with
further population decline, eventually dominating the EPC. In the other direction, as the
possibility of non-viability becomes less salient, with increasing chub and/or decreasing
trout, the present shadow value ebbs.

The influence of the present shadow value on policy is evident. In the example case
presented in Figure 3 this variable accelerates as chub levels decline past 6,000. Returning
to Figure 2A we see that (at the modal trout level) the optimal policy cycles quickly from
no action to intermediate and then maximum action as chub levels decline from 6,000 to
5,000.
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Figure 3: Decomposition of the value function into (1) expected present costs of optimal
control and (2) the present shadow value. The function varies over chub levels (Y) with
the trout level fixed at its mode under the optimal policy (𝑋 = 1400). (Chub level = adult
chub equivalent population in the mainstem.)

Similar to Montgomery et al. (1994), we explore how elements of the solution change
with respect to a change in the confidence level (𝛥). The direction of the effect is not
straightforward due to two competing effects: while we expect more effort as a result of a

18



stricter constraint, the viability kernel also shrinks since space that was just viable under
a lower confidence level no longer is. All else equal, we would expect less effort with a
smaller viability kernel. Taking these two effects together, we would not necessarily ex-
pect the optimal penalty (present shadow value) nor the optimized control cost to change
monotonically as the confidence increases. Indeed we find that these outcomes oscillate
as confidence increases. However, the overall trend is as expected as we increase the re-
quired confidence level from 0.5 to near certainty. At the median level of chub and trout,
we find that the [absolute] present shadow value (𝜔) increases on average by $5.7K per
percentage point increase in confidence. The expected present cost of control increases
by $10K per percentage point increase in confidence. In general this cost effect tends to
be higher for less favorable population levels (lower chub and higher trout) and lower for
more favorable population levels.

6 Parametric Uncertainty

In the baseline model analysis above, we incorporate stochastic population dynamics
but model parameters are assumed to be fixed and known. In this section we examine the
implications of uncertainty in 𝜆, a parameter that determines the impact of trout abun-
dance on juvenile chub survivorship and thus is central to joint chub-trout dynamics. We
first consider a model in which uncertainty in the parameter is unchanging. Later, we
consider a manager who expects to reduce this parametric uncertainty through learning.
We are concerned with (1) how initial uncertainty affects current management, (2) how
the anticipated arrival of information affects current management, and (3) the value of
information (VOI) with respect to a reduction in the uncertainty of 𝜆.

In our setting, 𝜆 is estimated from an ongoing mark-recapture study of the chub and
trout populations. Rainbow trout abundance and juvenile chub survival are both imper-
fectly observed because only a fraction of the population is observed in each research trip
and because various other factors, including environmental factors like river temperature
and turbidity affect both capture probability and survival rates of humpback chub (Yack-
ulic et al., 2018). Over time, the expectation is that estimates of 𝜆 will become more precise,
but not necessarily perfect.

We represent the manager’s beliefs (𝐵𝜆) over the uncertain parameter with a truncated
normal distribution, 𝜆 ∼ 𝑡𝑁 (𝐸[𝜆], 𝑉𝑎𝑟[𝜆], [𝜆, 𝜆]). We set the mean equal to the deter-
ministic value used in the baseline model in Section 5, 𝐸(𝜆) = 𝜆0. The variance is ap-
proximately based on the uncertainty estimated in Yackulic et al. (2018) from field data.
Specifically, 𝜆 span from zero to twice the mean: [𝜆, 𝜆] = [0, 2𝜆0]. The manager’s problem
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is then modified to determine removal action given expected dynamics (and thus, payoffs)
that integrate over possible values of this predation parameter.

6.1 Management under Fixed Parametric Uncertainty

In Figure 4 we present the policy function given fixed parametric uncertainty over 𝜆.
We find several differences relative to the deterministic 𝜆 base case from above in Figure 2.
First there is no longer a region in the upper right corner in which it is impossible to avoid
the threshold, since there is some chance that 𝜆 may be lower than previously assumed.
Second, there is an expansion to the state space above the spanning dashed line in which
the meeting the joint chance constraint is not feasible. This is because population dynamics
are generally less favorable to chub given symmetric uncertainty over 𝜆. This stems from
the nonlinearity in the juvenile chub survival function in Equation 8: a given increase in 𝜆
has a more deleterious effect on chub survival than the advantage conferred by a decrease
in 𝜆 of the same magnitude.

These less favorable chub dynamics drive a key change in the policy function: optimal
control becomes more precautionary. The transition zone from no control to maximum
control (the multi-shaded band in Figure 4) shifts to the southwest. Commensurately the
chub-trout population density after 20 years (concentric circles) shifts in the same direc-
tion.10 Overall, while accounting for uncertainty in the effect of trout on chub leads to
less favorable expected dynamics for chub, precautionary optimal management leads to
maintenance of greater chub levels than are maintained in the baseline model.

6.2 Management with Learning and the Value of Information

In our learning scenario, we assume that ongoing research will provide a more precise
understanding of the true parameter value after a specific number of years have passed.
The arrival of information serves to tighten the distribution over plausible values for 𝜆.
This information is generated by a research program such that the timing of information
arrival is predetermined and exogenous. This learning structure is motivated by and pa-
rameterized to be consistent with monitoring program for chub and trout in this system.

Initial beliefs, 𝐵𝜆
0 , are the same as in the fixed uncertainty in Section 6.1. The manager

also knows that information to update these beliefs will arrive at some known number
of periods in the future, 𝑇𝑖𝑛𝑓 𝑜. We assume that learning is not complete, i.e. there will
still be some uncertainty (though reduced) about the true parameter value. Upon learn-
ing, beliefs evolve to 𝐵𝜆

𝑇𝑖𝑛𝑓 𝑜
. This involves updates to both the expected value, 𝐸𝑇𝑖𝑛𝑓 𝑜

[𝜆],
10The cumulative density at 50% (outer ring) no longer dips below 6,000 chub nor exceeds 2,400 trout.
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Figure 4: The policy function under uncertain 𝜆 showing the optimal number level of
control in a year given the current state (chub and trout levels) for the case of 𝐸(𝜆) = 0.0009
and 𝜎(𝜆) = 0.00045. The concentric curves show level sets of the joint density (10%, 25%,
and 50%) after 20 years under the optimal policy. The dashed line spanning the figure
from left to right delineates the upper boundary of the viability kernel. (Chub level =
adult chub equivalent population in the mainstem.)

and the variance, 𝑉𝑎𝑟𝑇𝑖𝑛𝑓 𝑜
[𝜆]. We assume that learning drives a decrease in the variance

from 𝜆2
0/4 to 𝜆2

0/9. We assume new information arrives in 𝑇𝑖𝑛𝑓 𝑜 = 5 years. These as-
sumptions are motivated by annual monitoring of juvenile chub and consideration of the
interannual variability of environmental (temperature and turbidity) and population fac-
tors (intraspecific density dependency and rainbow trout abundance) influencing juvenile
chub survival (Yackulic et al., 2018).

The updated, post-learning mean, 𝐸𝑇𝑖𝑛𝑓 𝑜
[𝜆], is not known at 𝑡 = 0. Because the man-

agement model must be solved for every potential value of 𝐸𝑇𝑖𝑛𝑓 𝑜
[𝜆], we specify a discrete

set of possibilities. We assume that updated beliefs are also symmetric-truncated-normal
with a range that lies within the domain of the initial belief nodes. Combining an assumed
number of nodes to represent initial beliefs with the assumptions above, returns a set of
possible values for 𝐸𝑇𝑖𝑛𝑓 𝑜

[𝜆].11

11We represent initial beliefs with 21 nodes. Post-learning beliefs shrink to 15 nodes given the decline
in variance. Given pre- and post-learning variance levels, this results in seven possible levels for 𝐸𝑇𝑖𝑛𝑓 𝑜

[𝜆].
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6.2.1 A Solution Algorithm under Learning

We solve the optimization with learning model in two stages:

1. First, we use value function iteration (see Section 4) to solve the problem from time
𝑇𝑖𝑛𝑓 𝑜 forward, given any potential state (𝑋, 𝑌) and for every possible new set of beliefs
about 𝜆 given by the new information: 𝑉𝑇𝑖𝑛𝑓 𝑜

(𝑋, 𝑌|𝐵𝜆
𝑇𝑖𝑛𝑓 𝑜

). See Appendix D for ex-
amples of optimal policy functions under a range of updated belief states.

2. Second, conditional on the optimal responses at time 𝑇𝑖𝑛𝑓 𝑜 determined above, we
use backward induction from 𝑇𝑖𝑛𝑓 𝑜 to solve the remaining problem, 𝑉0(𝑋, 𝑌) (to-
ward the present period), given initial beliefs 𝐵𝜆

0 . Starting from 𝑇𝑖𝑛𝑓 𝑜, we calculate
𝐸𝐵[𝑉𝑇𝑖𝑛𝑓 𝑜

(𝑋, 𝑌|𝐵𝜆
𝑇𝑖𝑛𝑓 𝑜

)], where each contribution to the expectation, 𝑉𝑇𝑖𝑛𝑓 𝑜
(𝑋, 𝑌|𝐵𝑖),

is weighted by the prior likelihood, 𝑃𝑟(𝐵 = 𝐵𝑖). Then we use repeated application of
the Bellman operator in order to find 𝑉0(𝑋, 𝑌) and then the optimal policy at time
𝑡 = 0.

6.2.2 Learning Results

Here we explore the value and policy impacts of learning to improve our understand-
ing of 𝜆. Figure 5 shows the optimal policy function for the manager anticipating some
information event at 𝑇𝑖𝑛𝑓 𝑜 periods in the future.12 The dashed line, marking the feasibility
of our viability constraint, has not changed from the non-learning case (i.e. the “defensi-
ble” region has not changed). Once the learning manager averages over all possible future
beliefs (necessary when considering the continuation value at 𝑇𝑖𝑛𝑓 𝑜), the expected dynam-
ics under the learner’s policy are identical to that of the non-learner. This can be seen, for
example in the case of applying maximum action, by evaluating the risk-to-go (i.e. likeli-

The probability of transitioning to any of these levels is given by the cumulative probability (under initial
beliefs) that lies in the range of any given updated belief. We also considered more dense discretization
of beliefs; this did not change the results but increased computing time. Numerically, initial beliefs are
characterized by 𝐸0(𝜆) = 9.0𝑥10−4 and 𝑉𝑎𝑟0[𝜆] = 2.0𝑥10−7, while post-learning beliefs have a variance
of 𝑉𝑎𝑟𝑇𝑖𝑛𝑓 𝑜

[𝜆] = 9.0𝑥10−8 with a mean in the range [6.3𝑥10−4, 1.2𝑥10−3].
12More precisely, it is the policy function at time zero, the beginning of the program. The reader might

recognize that finite-time horizon problems will admit a policy function for each year before 𝑇𝑖𝑛𝑓 𝑜. In our
numerical exercise, this policy function changes very little from periods 0-5. Of course, post-learning, the
policy function may dramatically change. Appendix D provides the post-learning policy function for three
possible posterior beliefs.
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hood of having hit the population threshold by time 𝑇):

𝑟 (𝑍0| max{𝒜}) = 1 − 𝑃𝑟
⎧{
⎨{⎩

𝑇
⋂
𝑡=1

(𝑌𝑡 > 𝑌)∣𝑍0, max{𝒜}
⎫}
⎬}⎭

(19)

= 𝐸𝑍 [1𝑌𝑇=𝑌(𝑧)∣𝑍0, max{𝒜}]

= 𝐸𝑍 [𝐸𝐵 [1𝑌𝑇=𝑌(𝑧)∣𝑍0, 𝐵𝜆
𝑇𝑖𝑛𝑓 𝑜

, max{𝒜}]] ,

where 𝑧 represents the state space {𝑥, 𝑦}, 1𝑌𝑇=𝑌(𝑧) is the indicator function and the last line
follows from the Law of Iterated Expectations. Further detail on calculating the risk-to-go
function is provided in Appendix C.
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Figure 5: The policy function under uncertain 𝜆 for the case of the learning manager.
Shading indicates how many mechanical removals of trout are optimal in a year given the
current populations of trout (horizontal axis) and chub (vertical axis) in the management
reach. The dashed line spanning the figure from left to right delineates the upper bound-
ary of the viability kernel. The concentric curves show level sets of the joint density (10%,
25%, and 50%) after 20 years under the optimal policy. The solid line spanning the fig-
ure from left to right (towards the bottom) shows the southern extent of the state space
over which the non-learner imposes a nonzero level of control. (Chub level = adult chub
equivalent population in the mainstem.)

The solid line spanning from left to right—a new addition to Figure 5 not appearing
in previous policy figures—marks the southern extent of the region in which the non-
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learning manager (from Figure 4) applies a positive level of control. Thus, in Figure 5, the
zone stretching from the spanning solid line up to where the learner reaches maximum
control is where the learner and non-learner policies differ. Specifically this is where the
learner exerts less control, experiences lower costs, and yet still meets the same viability
goal. The learner’s relaxed approach is consistent with the finding from Section 6.1 that
uncertainty in 𝜆 induces a more precautionary policy. Thus, an anticipated reduction in
uncertainty reduces the incentive for that elevated precaution.

Lastly, we are interested in the value of information to the manager, i.e. the expected
benefit from the anticipated and then realized reduction in the uncertainty over 𝜆. This
value can be evaluated by taking the difference in the expected present cost of optimal
control for two programs, one with improved knowledge, and the other without:

𝐸𝑉𝑂𝐼 = 𝐸 ⎡⎢
⎣

∞
∑
𝑡=0

𝛿𝑡𝐶(𝐴𝑡)⎤⎥
⎦𝑛𝑜 𝑖𝑛𝑓 𝑜

− 𝐸 ⎡⎢
⎣

∞
∑
𝑡=0

𝛿𝑡𝐶(𝐴𝑡)⎤⎥
⎦𝑖𝑛𝑓 𝑜

. (20)

We expect the 𝐸𝑉𝑂𝐼 to be non-negative since the manager should do no worse with addi-
tional information. We present the 𝐸𝑉𝑂𝐼 in Figure 6A as a function of any given current
population state. The 𝐸𝑉𝑂𝐼 reaches a high of around $600K in the region where the learn-
ing manager’s policy differs from the non-learner’s policy (bounded by the spanning solid
line in Figure 5). The 𝐸𝑉𝑂𝐼 is zero at the population threshold and low in the northeast
corner of Figure 6A where chances of declining to the population threshold are high (thus
forcing maximum action regardless of the information set).
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Figure 6: Panel A shows the 𝐸𝑉𝑂𝐼 ($100Ks). Panels B and C decompose the 𝐸𝑉𝑂𝐼 into the
prospective and congruity VOI, respectively. (Chub level = adult chub equivalent popu-
lation in the mainstem.)
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We decompose the 𝐸𝑉𝑂𝐼 into two components. The first is the change in expected
management cost before learning takes place while the manager is anticipating learning,
which we call the “prospective” VOI. In general this value could be positive or negative.
In our setting, across the state space it is likely that this value will be either close to zero
(where the learning and non-learning managers policies are the same) or positive (where
the learning manager is less aggressive as depicted in Figure 5). When the manager antic-
ipates learning there is less need in the short run to hedge against the worst-case scenario,
which can be addressed if revealed to be the true state of world. This is indeed the case
for the prospective VOI shown in Figure 6B.

The second component, which we call the “congruity” VOI, is the expected post-learning
value of information that stems from less error in optimal management (since beliefs are
more tightly concentrated on the truth). In general this value will be non-negative. The
congruity VOI, shown in Figure 6C, is the larger portion of the 𝐸𝑉𝑂𝐼 (roughly 80%) since
the learning horizon is short relative to the viability horizon (𝑇𝑖𝑛𝑓 𝑜 = 5 years). The con-
gruity VOI is also relatively uniform over population levels since this value accrues after
some delay (𝑇𝑖𝑛𝑓 𝑜 years) and over the long run, in which we would expect to move sub-
stantially around the state space. The exception is the northeast corner of the figure where
chances of declining to the population threshold are high.

7 Discussion

In this paper, we demonstrate a new dynamic programming algorithm for solving
chance-constrained problems. Unlike previous approaches, our method does not rely on
simulation. We provide a solution for the joint-chance constrained optimization problem
without the need to approximate the chance constraint or segregate stochasticity. The use
of dynamic programming allows us to recover a policy function that is too complex to
obtain via a parametric simulation approach. The distribution of population outcomes is
endogenous with respect to this policy, rather than chosen ex ante. We also gain insight
into the implied economic value of a viable chub population. Previous penalty-based ap-
proaches have assumed penalty values for violating a viability objective. However our
method endogenizes the penalty level, revealing an implied valuation of the chub thresh-
old given the manager’s risk preferences (from the viability goal) and cost-effective trout
control.

An important simplification in our model is the condensing of two sub-adult and two
adult chub size classes into a single state variable. While this is common in the broader
fisheries literature it is also known that accounting for age classes can be important for
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management (Tahvonen, 2009). Modeling chub as proceeding from juveniles directly to
the adult population of interest sets aside additional sources of uncertainty in chub dy-
namics that could be important. This approach also means that control choices are quickly
represented in the adult population. Incorporating the chub size class model of Yackulic
et al. (2014)—i.e. delayed returns from control and additional uncertainty—would likely
lead to a more conservative policy function in which control is initiated sooner as a ro-
bust chub population declines or a low trout population increases. Our solution method
would still serve in such a model though the state space would expand to five continuous
variables. Recent advancements in dynamic programming methods for resource manage-
ment problems with such high numbers of state variables (see e.g. Springborn et al. 2018)
should allow for such a model.

We find that the present expected cost of control of maintaining a viable chub popu-
lation over an infinite time horizon is $4.6M, 45% lower compared to previous findings
by Bair et al. (2018). This difference arises partially because our optimal policy is fully
flexible (not parametrically constrained) and depends not only on trout abundance, but
chub abundance as well. To illustrate, when chub are in great numbers and trout are at a
moderate 1,500 individuals, their policy prescribes maximum action, while ours suggests
none.13 Our policy of comparison is that of a non-learning manager; further reducing the
expected cost of the removal program is the added benefit of new information.

We find that the learning manager’s current shadow value—the penalty incurred for
violating the viability threshold of 4,000 chub—is $330M. Under the optimal management
strategy, this outcome is unlikely to occur. Valuing a different marginal change, Duffield
et al. (2016) estimate the aggregate U.S. household marginal value for only a 1% increase
in humpback chub abundance is $130M. If we set the trout level to its modal value un-
der the optimal policy, we find a 1% increase in chub abundance implies a change in the
present shadow value of $170M, $62K, and $5K at initial chub levels of 4,000, 7,000, and
12,000, respectively. Thus the value implied by the viability goal only reaches the existing
valuation estimate as we approach the threshold.

We provide the first study of optimal adaptive management in a joint-chance con-
strained problem. There are substantial returns to learning. The expected present cost
of the viability program is reduced by 11% compared to a program run by a manager fac-

13An extensive quantitative comparison between the results of Bair et al. (2018) and our results should
be considered with caution due to key differences in modeling. First, we update parameters of population
dynamic equations to reflect the latest science. Second, Bair et al. only tracks the trout population while we
track both chub and trout. Finally, and most importantly, the specification of the viability goal—the central
constraint—is quite different. Bair et al. focus on the average annual survival rate of juvenile chub. Here
we instead focus explicitly on the likelihood of adult chub remaining on the safe side of the population
threshold.

26



ing reducible uncertainty but not receiving any new information. Most of this cost savings
is due to finer-tuning of trout management in response to new information, rather than
the anticipation of the information itself. A similar idea has been explored by Costello
et al. (1998), who consider the value of El Niño forecasts in the west-coast coho salmon
fishery versus a world without them. They find returns to accurate forecasts at around
1.5% of net present benefits of the fishery. The discrepancy in returns is likely due to the
relative importance of the source of reducible uncertainty in either model. In our case, the
effect that trout have on chub survival is much more salient than the effect of El Niño on
the coho salmon fishery.

The economic assessment developed here provides an initial introduction to chance-
constrained dynamic programing and environmental decision making. Further opportu-
nities for applying this method include climate change mitigation, and invasive species
and disease control. An optimal emissions schedule or disease control program would
reflect the desire to reduce the chance of further warming over a dangerous threshold
or an outbreak of disease, respectively. Fundamental components of these problems are
the centrality of jointly uncertainty outcomes and the difficulty of estimating the cost of a
disaster scenario.

Future research in this vein could incorporate viability constraints in larger bioeco-
nomic problems. Immediately related to our setting, the management of water flows in
the Colorado River as an action to control invasive species involves hydropower and recre-
ational values in addition to the impact on species viability. In order to assess the greater
management problem, the development of an optimal chub management strategy would
be considered as a subset of the broader management strategy. More relevant to marine
resources is the management of commercial harvest of healthy stocks in the presence of
by-catch of degraded species, contrasting market-derived values with concrete, yet invalu-
able conservation obligations.
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Appendix

A Timeline of biological events

The timeline of biological events in each decision period is given in Table A.1. While
this simplified sequence of events is stylized, it includes the essential features of joint-
trout-chub dynamics in the mainstem.

Table A.1: Timeline of biological events in each decision period.

Order Event Updates
1 Trout and chub stocks are observed 𝑋𝑡, 𝑌𝑡

Trout removal decision is made, cost is realized 𝐴𝑡, 𝐶(𝐴𝑡)
2 New recruitment (& migration) is generated 𝑥𝑡, 𝑦𝑡
3 Existing trout stock affects juvenile chub survival 𝑠𝑌(𝑋𝑡)
4 Trout removals undertaken 𝑠𝑋(𝐴𝑡)
5 Total trout stock natural survivorship 𝛾

Adult chub stock natural survivorship 𝜂
6 Complete updating of the two stocks 𝑋𝑡+1, 𝑌𝑡+1

B The dynamic programming solution algorithm

1. Define parameters, functional forms and discretization of state and action space

(a) biological and economic parameters, state transition equations

(b) viability goal given by the triplet {𝑌, 𝛥, 𝑇}

(c) state and control sets {𝑥, 𝑦, 𝒜}, (inf(𝑦) = 𝑌, an absorbing state14)

2. Specify or initialize dynamic programming routine arrays and functions

(a) Markov transition matrix 𝑃(𝑋𝑡+1, 𝑌𝑡+1|𝑋𝑡, 𝑌𝑡, 𝐴𝑡)

(b) “risk-to-go” function 𝑟(𝑋0, 𝑌0|𝐴(𝑥, 𝑦))

(c) identify the viability kernel (De Lara and Doyen, 2008), i.e. the subspace where
viability goal is feasible at desired confidence 𝛥, {𝑥, 𝑦}𝑓 s.t. 𝑟({𝑥, 𝑦}𝑓 | max{𝒜}) ≤
1 − 𝛥

14Generically, even if 𝑌 is not truly an absorbing state, it is useful to model it as such in the solution
algorithm since we are concerned with any obtainment of 𝑌 (failure) in a time path and thus capturing the
first such obtainment is sufficient and simple.
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(d) initial (large) bounds for cost of non-viable population (penalty), [𝛺𝐿, 𝛺𝐻]

3. Guess a value for penalty, 𝛺 = 𝑚𝑒𝑎𝑛(𝛺𝐿, 𝛺𝐻). Fix the value function at the ab-
sorbing state to the penalty level, 𝑉𝛺(𝑥|𝑌) = −𝛺, and solve for the value function
𝑉𝛺(𝑥, 𝑦) and optimal policy 𝐴𝛺(𝑥, 𝑦) via value function iteration (dynamic program-
ming step)

4. Check if viability constraint is met within the viability kernel (see e.g. Figure C.1)

(a) if 𝑟({𝑥, 𝑦}𝑓 |𝐴𝛺(𝑥, 𝑦)) ≤ 1 − 𝛥 everywhere, then 𝛺𝐻 ∶= 𝛺, since 𝛺∗ ≤ 𝛺

(b) if 𝑟({𝑥, 𝑦}𝑓 |𝐴𝛺(𝑥, 𝑦)) > 1 − 𝛥 somewhere, then 𝛺𝐿 ∶= 𝛺, since 𝛺∗ ≥ 𝛺

(c) if within desired tolerance, [𝛺𝐻 − 𝛺𝐿] < 𝜖, then 𝛺∗ ∶= 𝛺𝐻 and terminate

(d) otherwise, repeat 3-4

C Calculation of the risk-to-go function

Having solved for the optimal policy 𝐴𝛺(𝑥, 𝑦), we can produce a transition matrix con-
ditional on this optimal policy, 𝑃𝛺(𝑋𝑡+1, 𝑌𝑡+1|𝑋𝑡, 𝑌𝑡), which for this section we will simply
call 𝑃. Further, the {𝑥, 𝑦} state space can be rolled into the symbol 𝑧.

For a row-stochastic (rows sum to 1) matrix 𝑃, an initial distribution 𝑍0 (1-by-n) and
real-valued function 𝑓 (𝑧) (n-by-1), we can describe the expectation of 𝑓 in period 𝑇 as

𝐸[𝑓𝑇(𝑧)] = 𝑍0𝑃𝑇𝑓 (𝑧) (C.1)

Decomposing the right-hand side of equation (C.1), 𝑍0𝑃𝑇 represents the distribution
of states (1-by-n) at time 𝑇, 𝑍𝑇, which will prove useful in showing the 20-year joint prob-
ability mass function earlier in the text. 𝑃𝑇𝑓 (𝑧) describes the expected evolution of the
function (n-by-1) after the same number of steps, 𝐸[𝑓𝑇(𝑧)|𝑍0].

We want to evaluate the probability of an event (non-viability) happening, conditional
on starting state: 𝐸[𝑓𝑇(𝑧)|𝑍0] = 1 − 𝑃𝑟 {⋂𝑇

𝑡=1(𝑌𝑡 > 𝑌)|𝑋0, 𝑌0, 𝐴(𝑥, 𝑦)}, which we will sim-
plify to Pr(𝑌𝑇 = 𝑌|𝑍0).15 Taking the expectation of the indicator function 1𝑌𝑇=𝑌(𝑧) pro-
vides us with the probability that our threshold is hit within 𝑇 periods:

𝐸[𝑓𝑇(𝑧)|𝑍0] = 𝐸[1𝑌𝑇=𝑌(𝑧)|𝑍0] = Pr(𝑌𝑇 = 𝑌|𝑍0) (C.2)

15Recall that 𝑌 is an absorbing state, which eliminates the possibility of double-counting a crossing of
the threshold.
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By choosing 𝑓 (𝑧) = 1𝑌=𝑌(𝑧), we can evaluate the degree of confidence in which we
achieve the viability target, conditional on the optimal policy and the starting state.

In Figure C.1 we show the risk-to-go, 𝑟(⋅), i.e. the probability of reaching the chub
population threshold level given any current chub-trout state. Here again, the spanning
dashed line traces the states where we can just meet the joint chance constraint (viability
goal): 𝑟(⋅) = 1 − 𝛥. The risk-to-go is quite low in most of the state space, where 𝑟(⋅) is
substantially below 1 − 𝛥. For example, towards the bottom-left of Figure C.1 we have
𝑟(𝑥 = 1000, 𝑦 = 8, 000) = 0.1%.
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Figure C.1: The risk-to-go—probability of reaching the chub population threshold level—
within 20 years from any initial starting state and conditional on the optimal policy. For
most states, the viability goal is met or exceeded. The dashed line spanning the figure
from left to right delineates the upper boundary of the viability kernel at the specified
confidence level, 𝛥 = 90%.
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D Post-learning policy functions
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Figure D.1: Optimal policy functions under different post-learning distributions of 𝜆
where variance falls to 𝑉𝑎𝑟𝑇𝑖𝑛𝑓 𝑜

= 𝜆2
0/9. The updated mean, 𝐸[𝜆], varies across panels,

decreasing from low to high from left to right. The dashed line spanning each figure from
left to right delineates the upper boundary of the viability kernel. The concentric curves
represent level sets of the joint density function after 20 years under the optimal policy
and depict cumulative densities of 10%, 25%, and 50%.
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