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Abstract

Forgoing the traditional economic benefits of dam management to utilize de-
signer flows—ecologically motivated releases of water into highly regulated
river segments—can be an effective but costly approach to conserving threat-
ened species. In this paper, we perform an integrated assessment of designer
flow implementation at the Glen Canyon Dam on the Colorado River. In this
prominent and representative example, designer flows can be used to control
nonnative species that disadvantage endemic threatened species. Our analy-
sis of this system suggests that the cost of designer flows remains too high to
justify implementation. The lack of cost effectiveness of designer flows stems
from the high value of foregone hydropower, the delay in benefits for down-
stream threatened species, and the uncertainty in designer flow effectiveness.
Our results inform an ideal course of conservation action in other regulated
river systems based on the presence or absence of these critical features.
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1 Introduction

Understanding the trade-offs associated with managing dam-regulated rivers is in-
creasingly important due to the growing number of obstructions on large rivers (Zarfl
et al., 2014) and increasing recognition of the values of resources within rivers (Jackson
et al., 2008). While dams can provide considerable economic benefits, such as hydropower
electricity generation and reliable water supply, they can also disturb ecosystem function
and services, threaten freshwater species diversity, and facilitate the establishment of non-
native species (Schmidt et al., 1998; Vörösmarty et al., 2010; Liermann et al., 2012; Ziv et al.,
2012). A pervasive challenge in regulated river management is operating dam infrastruc-
ture in a way that balances economic and conservation objectives.

Designer flows are a promising approach for balancing these objectives (Schmidt et al.,
1998; Poff et al., 2016). A designer flow manipulates the downstream hydrological condi-
tions of a river through prescribed water releases from a dam (Acreman et al., 2014). For
example, the release of water can be timed to dewater—and thus control—populations
of nonnative fish species downstream (Giardina et al., 2024). The evaluation of designer
flows is now commonplace (e.g. Sabo et al., 2017), and there are several instances where
designer flows have been used on large regulated rivers to improve ecosystem function
and services (Watts et al., 2011; Olden et al., 2014; Deemer et al., 2022).

Despite evaluating the ability of designer flows to meet multiple objectives, previous
studies have not considered the opportunity cost of designer flows in terms of the fore-
gone benefits that would have been prioritized in the absence of designer flows, e.g., from
hydropower generation, agricultural production, or natural flow mimicry. Further, the
benefits of experimentation when the effectiveness of designer flows is uncertain have not
been considered. These lacunae are due to the scarcity of formal integrated assessment
models considering economic outcomes, conservation objectives, and opportunities for
active adaptive management to integrate learning into implementation (Hermoso et al.,
2012). Without considering the opportunity cost of designer flows and the value of in-
formation through experimentation, managers cannot ensure that conservation objectives
are being met at the lowest expected cost, or that designer flow implementation is justified.

In this paper, we perform an integrated assessment of designer flows for achieving
conservation goals with an application to a large dam-regulated ecosystem downstream
of the Glen Canyon Dam on the Colorado River in the Southwest United States. Using the
recent development of shadow value viability (SVV; Donovan et al., 2019; Donovan and
Springborn, 2022), we consider management to achieve a viable population of a threat-
ened native species using the least costly combination of conservation actions. Optimal
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management using SVV ensures that species viability is maintained with a given level of
confidence while considering the opportunity cost of designer flows in terms of the fore-
gone economic value of hydropower electricity generation. Our framework provides an
integrated assessment that considers conservation outcomes, the economic opportunity
cost of management actions, and the value of information from designer flows.

In our study, two management actions are available to dam regulators. First, designer
flows reduce the recruitment of a nonnative species, rainbow trout (Oncorhynchus mykiss),
in the tailwater immediately downstream from the dam by manipulating flows to strand
juveniles on higher elevation gravel bars (Giardina et al., 2024). Second, a nonflow action
(electrofishing) is available to control adult nonnative trout populations further down-
stream, where a threatened native species, humpback chub (Gila cypha), is impacted by
competition and predation (Yackulic et al., 2018b). The opportunity cost of designer flows
is the economic value foregone by deviating from a release schedule that maximizes the
value of hydropower. Thus, the cost of designer flows is more sensitive to external factors
(i.e., electricity prices) than the nonflow action. Optimal management entails employing
neither, either, or both actions to maintain threatened species viability at minimal cost.

Our conclusions are fourfold. First, designer flows are a prohibitively expensive man-
agement tool when rainbow trout are the focus of designer flows in the system. The op-
timal policy does not frequently use designer flows to control rainbow trout when non-
flow action is available because the benefit to the humpback chub accrues only after two
years—the interval over which juvenile trout grow and migrate downstream before pos-
ing a viability threat—and downstream removal actions can be safely delayed until there
is a sufficient threat posed to the humpback chub. Thus, a policy favoring the nonflow ac-
tion generates the lowest present-valued cost of management without loss of threatened
species viability.

Second, the optimal designer flow policy is highly sensitive to the recruitment of ju-
venile rainbow trout—the share of juveniles that reach maturity and successfully migrate
downstream of Glen Canyon Dam—but this information is costly to obtain and not re-
quired for downstream nonflow action. Even if rainbow trout recruitment observation is
undertaken, the management advantage that designer flows earn relative to the nonflow
action only occurs in rare cases when recruitment is exceptionally high while downstream
conditions are favorable for the humpback chub (which eases the need for immediately
impactful downstream removals). Thus, obtaining this recruitment information has very
little impact on long-run expected costs.

Third, our designer flow policy is sensitive to the biological traits of the nonnative
species and the nature of interspecific interactions. For example, a much more piscivo-
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rous predator, brown trout (Salmo trutta), increased in the study area starting around 2015
(Runge et al., 2018; Yackulic et al., 2020; Healy et al., 2023). While brown trout carrying
capacity is expected to be lower than for rainbow trout, they are expected to have a greater
per capita effect on humpback chub if they reach high abundances downstream of Glen
Canyon Dam tailwater. Extending our model to consider a more effective predator re-
duces the prior preference for the nonflow action, chiefly due to a combination of brown
trout’s effect on the humpback chub and higher natural survival rate (which increases the
duration of this higher per capita effect). Early designer flow action is preferred given that
repeated years of high downstream brown trout abundance pose a serious threat to the
humpback chub.

Fourth, we find that an adaptive management regime can reduce electricity generation
opportunity costs at Glen Canyon Dam. We employ a form of active adaptive management
where a manager has the option to implement a short-run program of increased designer
flow use to reduce uncertainty in flow efficacy before determining an optimal manage-
ment plan for the long-run. Our manager can choose to implement no learning, or one
of two short-run learning regimes that differ in their aggressiveness. The two learning
regimes arrive at more precise information over different expected time horizons due to
their differing intensity. We demonstrate that the decision to experiment is highly sensi-
tive to future energy costs. Our main result is as follows: if energy costs are not expected to
increase dramatically, the less aggressive learning regime generates a net benefit relative
to a policy that does not employ learning.

While our conclusions are specific to the Colorado River downstream of Glen Canyon
Dam, our study illustrates how detailed knowledge of management objectives, ecosys-
tem functions, opportunity costs, and active learning opportunities can be integrated to
assess the performance of conservation actions. By explicitly modeling the mechanisms
that drive system outcomes, we are able to demonstrate the sensitivity of conservation
and learning decisions to critical features of our setting, such as opportunity costs and the
interactions of downstream aquatic species. Our results can thus inform an ideal course
of conservation action in other regulated river systems based on the presence or absence
of these critical features.

In the next section, we lay out the three components of our integrated assessment
model. First, Section 2.1 presents the bioeconomic model and solution method. Sections
2.2 and 2.3 then specify the opportunity cost of designer flows and our adaptive manage-
ment strategy, respectively. Section 3 explores the value of designer flows with simulated
results from several numerical exercises including our baseline model (3.1), incorporat-
ing more detailed ecosystem monitoring (3.2), considering a more piscivorous predatory
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species (3.3), and adaptive management (3.4), respectively. Section 4 concludes with fur-
ther discussion regarding external validity, designer flow experimentation, and integrated
assessment research.

2 Integrated assessment model

In this section, we present our integrated assessment framework for evaluating the
cost-effectiveness of designer flows for the Glen Canyon Dam in achieving conservation
goals for a threatened humpback chub population. We begin with a biological model
that depicts the dynamics and interspecific interactions of trout and humpback chub pop-
ulations in the Colorado River downstream of the Glen Canyon Dam. We then intro-
duce an environmental manager’s program, which is to minimize the expected cost of
trout-reducing actions (mechanical removals and designer flows), subject to an objective
of maintaining (probabilistically) the humpback chub population above a viability thresh-
old. The cost of undertaking trout-reducing actions includes the opportunity cost of im-
plementing a designer flow, which we characterize as the forgone economic value of en-
ergy generation when dam releases deviate from those that meet energy generation objec-
tives. We present a hydropower optimization model that determines the hourly flow that
maximizes the economic value of hydropower. The opportunity cost of designer flows is
the difference in the optimal economic value of hydropower generation with and without
designer flow constraints. Finally, we extend the environmental manager’s problem to in-
clude an element of active adaptive management, which provides an opportunity to learn
the true efficacy of designer flows in the future through short-run experimentation.

2.1 Species viability model and solution method

The Colorado River downstream of Glen Canyon Dam is habitat for both an economi-
cally valuable nonnative rainbow trout (trout) sport fishery and for the threatened native
humpback chub (chub) (Bair et al., 2016; Yackulic et al., 2014). Contemporary operation of
the dam facilitates a self-reproducing population of rainbow trout in Glen Canyon, which
periodically migrates downstream into Marble and Grand Canyons, especially following
large recruitment events (Korman et al., 2015). A population of chub occurs around the
confluence of the Colorado River and Little Colorado River in Grand Canyon National
Park, 125 km below Glen Canyon Dam. Chub spawn in the Little Colorado River and a
portion of juveniles disperse into the mainstem of Colorado River, where they are vulner-
able to competitive and predatory pressure from adult trout (Yackulic et al., 2014, 2018b).

4



Figure 1 shows a map of the study area.

Figure 1: Map of (A) the study area in the Colorado River ecosystem, with detail of (B) the tailwater
below Glen Canyon Dam, and (C) chub monitoring and trout removal reaches near the confluence
of the Colorado River and Little Colorado River.

Our biological model is adapted from previous bioeconomic analyses of this system
(Bair et al., 2018; Donovan et al., 2019), and parameterizations (numerical values in Ap-
pendix A) are derived from past population modeling efforts (Yackulic et al., 2014; Korman
et al., 2015; U.S. Department of the Interior, 2016; Yackulic et al., 2018b).

Adult population dynamics for each species are modeled at an annual timestep 𝑡 and
given by

𝑊𝑡+1 = (𝑊𝑡 − 𝑥𝑡 + 𝑤𝑡) ⋅ 𝛾𝑤, 𝑊𝑡 ≥ 0, (1)

𝑋𝑡+1 = (𝑋𝑡 + 𝑥𝑡) ⋅ 𝑠𝑥(𝐴𝑡) ⋅ 𝛾𝑥, 𝑋𝑡 ≥ 0, (2)

𝑌𝑡+1 =
⎧{
⎨{⎩

𝑦𝑡 ⋅ 𝑠𝑦(𝑋𝑡) + 𝑌𝑡 ⋅ 𝛾𝑦, if 𝑌𝑡 > 𝑌
𝑌, if 𝑌𝑡 ≤ 𝑌,

⎫}
⎬}⎭

, (3)

where 𝑊, 𝑋, and 𝑌 denote stocks of adult trout upstream in Marble Canyon, adult trout
downstream in the Juvenile Humpback Chub Monitoring Reach, and adult chub within
the same monitoring reach, respectively. Adult population levels are given by uppercase
letters and new recruits to the adult stocks (either juveniles or incoming migrants) by the
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same letter in lowercase. The natural annual survivorship share for stock 𝑖 is denoted as 𝛾𝑖.
Adult trout in the monitoring reach face additional mortality from nonflow removals, 𝐴𝑡,
as specified by the survival function 𝑠𝑥(𝐴𝑡). Juvenile chub face additional mortality via the
predation pressure from adult trout, given by 𝑠𝑦(𝑋𝑡). A chub population that falls below
the viability threshold (𝑌) is considered “collapsed”—an irreversible state that triggers a
different decision-making regime beyond the scope of this model.

Recruitment to each stock via new juveniles (𝑤, 𝑦) or migrants (𝑥) is given by

𝑤𝑡 = 𝜓𝑤 ⋅ exp (𝜀𝑤,𝑡−1) ⋅ 𝑠𝑤(𝐹𝑡−1) 𝜀𝑤,𝑡
iid∼ unif(𝛼𝑤, 𝜅𝑤)∀𝑡 (4)

𝑥𝑡 = 𝜓𝑥 ⋅ 𝑊𝑡 (5)

𝑦𝑡 = 𝜓𝑦 ⋅ 𝜀𝑦,𝑡−1 𝜀𝑦,𝑡
iid∼ unif(𝛼𝑦, 𝜅𝑦)∀𝑡 , (6)

where the 𝜓 terms govern the share of a given sub-population that out-migrate (𝜓𝑤 addi-
tionally accounts for 1-year juvenile survival). Trout and chub recruitment are stochas-
tic processes, with variance driven by the distributions of the 𝜀 terms. Trout recruit-
ment is subject to additional pressure from designer flow-induced mortality, captured by
𝑠𝑤(𝐹𝑡−1). From these dynamic equations, it takes an average of two years for Glen Canyon
trout recruits to arrive at the monitoring reach (via Marble Canyon), and are thus poten-
tially exposed to both control actions (𝐴, 𝐹) at different life stages. Both action variables
are binary and represent a single within-period implementation.

There are three survival functions, including post-designer flow survival of trout re-
cruitment in Glen Canyon, post-removal survival of trout in the monitoring reach, and
survival of juvenile chub as a function of the monitoring reach trout abundance,

𝑠𝑤(𝐹𝑡) = 1 − 𝜃𝐹 ⋅ 𝐹𝑡 (7)

𝑠𝑥(𝐴𝑡) = 1 − 𝜃𝐴 ⋅ 𝐴𝑡 (8)

𝑠𝑦(𝑋𝑡) = (logit−1(𝜇 + 𝜆 ⋅ 𝑋𝑡))
12

, (9)

where the 𝜃 and 𝜆 parameters specify the strength of these mortality impacts. In our
model, 𝜃𝐹 is taken to be an unknown parameter with a given uniform distribution to re-
flect the current state of knowledge concerning designer flow efficacy—obtained through
expert elicitation and recent hypsometric analysis (Runge et al., 2015; Giardina et al., 2024).

We are concerned with the cost-effective reduction of trout competition and predation
on juvenile chub in the monitoring reach that maintains the adult chub population (𝑌)
above a viability threshold (𝑌) over a given time horizon (𝑇) with some level of confidence
(𝛥). The optimal policy minimizes the expected present cost of trout-reducing actions
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(removals 𝐴 and designer flows 𝐹) such that our viability goal is continually satisfied for
the next 𝑇 years,

min
𝐴𝑡,𝐹𝑡

𝐸 ⎡⎢
⎣

∞
∑
𝑡=0

𝛽𝑡 ⋅ 𝐶(𝐴𝑡, 𝐹𝑡)⎤⎥
⎦

(10)

s.t. 𝑃 ⎛⎜
⎝

𝑡+𝑇
⋂
𝑠=𝑡

𝑌𝑠 > 𝑌⎞⎟
⎠

≥ 𝛥, 𝑡 = 0, 1, ...∞ , (11)

and is subject to the dynamics in Equations 1-9. Within-period cost is given by

𝐶(𝐴𝑡, 𝐹𝑡) = 𝑐𝐴 ⋅ 𝐴𝑡 + 𝑐𝐹 ⋅ 𝐹𝑡 , (12)

where 𝑐𝐴 is the cost of removal and 𝑐𝐹 is the cost of conducting a designer flow, the latter
of which is determined by a model of future energy costs described in the next section.
Removals and designer flows are restricted to one implementation per year so that 𝐴𝑡, 𝐹𝑡 ∈
{0, 1}. Delaying action lowers costs in present-valued terms via the discount factor 𝛽.

An environmental manager’s viability horizon of 𝑇 years is nested in an infinite hori-
zon optimization problem since, in each year 𝑡, we are concerned with survivorship over
the next 𝑇 years. This “rolling window” constraint cannot be recast as something like
𝑌𝑡 > 𝑌, ∀𝑡 because no policy can support this constraint indefinitely due to the stochas-
ticity in the underlying dynamics (Donovan and Springborn, 2022). Similarly, the time
horizon of the cost minimization problem cannot be restricted to 𝑇 years, because this in-
centivizes a reduction in care for a threatened species in later periods that would cause
regret once the manager extends their program beyond the first 𝑇 years (Donovan and
Springborn, 2022). Thus, the rolling horizon is the correct representation of the viability
goal, and solving the above objective generates a dynamically consistent policy.

The manager’s problem can be equivalently cast as solving for the fixed point of a
Bellman equation. Let 𝑍 = [𝑊, 𝑋, 𝑌] denote the vector of state variables, 𝐺(𝑍) represent
the population dynamics specified in Equations 1-9, and 𝜁𝑡 capture additional “shock”
variables with no path-dependence (such as the recruitment of trout, 𝑤𝑡). Then the optimal
policy {𝐴(𝑍, 𝜁), 𝐹(𝑍, 𝜁)} satisfies

𝑉(𝑍𝑡) = min
𝐴𝑡,𝐹𝑡

𝐶(𝐴𝑡, 𝐹𝑡) + 𝛽 ⋅ 𝐸𝜀[𝑉(𝑍𝑡+1)|𝐴𝑡, 𝐹𝑡, 𝑍𝑡, 𝜁𝑡] (13)

s.t. 𝑃
⎧{
⎨{⎩

𝑡+𝑇
⋂
𝑠=𝑡

𝑌𝑠 > 𝑌
⎫}
⎬}⎭

≥ 𝛥 (14)

and 𝑍𝑡+1 = 𝐺(𝑍𝑡) . (15)
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Given the joint chance constraint imposing the viability requirement in Equation 14,
the problem specified above does not maintain the Markov property required by standard
dynamic programming solution techniques. To address this, we use a dynamic program-
ming algorithm specified by Donovan et al. (2019) which entails imposing an estimable
penalty (𝛺) that is incurred by the manager if the chub population falls to 𝑌, which is
treated as irreversible. This provides a virtual incentive for the manager to avoid states
that approach the threshold and penalty by taking on costly management action. Given
this penalty, a solution to the problem above—without the viability constraint—is found
via value function iteration (Judd, 1998), and the joint chance constraint is checked after
the optimization step. We iterate over penalty levels to find the lowest penalty that in-
duces the manager to meet (or exceed) the viability goal everywhere in the state-space it
is feasible to do so. This feasible region is referred to as the viability kernel, {𝑍}𝑘 (Donovan
et al., 2019; De Lara and Doyen, 2008; Oubraham and Zaccour, 2018).

In summary, we solve Program 16:

min {𝛺} s.t. 𝑃
⎧{
⎨{⎩

𝑡+𝑇
⋂
𝑠=𝑡

𝑌𝑠 > 𝑌 ∣ 𝐴𝛺, 𝐹𝛺, 𝑍𝑡 ∈ {𝑍}𝑘
⎫}
⎬}⎭

≥ 𝛥, (16)

where {𝐴𝛺, 𝐹𝛺} solve the following cost-minimization problem conditional on 𝛺:

𝑉𝛺(𝑍𝑡) = min
𝐴𝑡,𝐹𝑡

{𝐶(𝐴𝑡, 𝐹𝑡) + 𝛽 ⋅ 𝐸𝜀 [𝑉𝛺(𝑍𝑡+1) ∣ 𝐴𝑡, 𝐹𝑡, 𝑍𝑡, 𝜁𝑡]} (17)

s.t. 𝑉𝛺(𝑊𝑡, 𝑋𝑡, 𝑌) = 𝛺 (18)

and 𝑍𝑡+1 = 𝐺(𝑍𝑡) . (19)

After solving for 𝑉𝛺(𝑍𝑡) and the optimal policy {𝐴𝛺(𝑍𝑡, 𝜁𝑡), 𝐹𝛺(𝑍𝑡, 𝜁𝑡)}, we can recover
𝑉(𝑍𝑡) directly by calculating the expected present costs of the optimal policy (Donovan
and Springborn, 2022).

2.2 Opportunity cost of designer flows

The reach of the Colorado River running through Glen, Marble and Grand Canyons
is regulated by Glen Canyon Dam (GCD). Annual releases from GCD are allocated to
meet Upper Colorado River Basin water deliveries to the Lower Colorado River Basin,
while monthly and daily regulation is driven by hydropower and other downstream re-
source objectives (U.S. Department of the Interior, 2016). Hydropower generation at GCD
is utilized in the Western Interconnection, a power grid encompassing the western United
States and parts of Canada and Mexico. Given the low marginal cost of hydropower, GCD
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is used as a load-following facility that adjusts output throughout the day to maximize the
value of energy generated as demand changes, allowing avoidance of alternative high-cost
electricity generation from other sources during peak demand periods.

Designer flows result in dam releases that deviate from those that meet energy gen-
eration objectives. At GCD, dam operators choose to implement an annual designer flow
cycle, which consists of three separate designer flows in the months of May, June, and
July (U.S. Department of the Interior, 2016). The opportunity cost of a designer flow cy-
cle is the unrealized economic value of energy generation when deviating from the river
flow that meets energy generation objectives. To estimate this foregone economic value,
we model energy generation under a dam operator selecting hourly flow through GCD to
optimize the economic value of energy subject to operational constraints, with and with-
out designer flows. The difference in the optimal economic value of energy generation
with and without designer flows informs 𝑐𝐹 in Equation 12.

To begin, we model hydropower production (in MWh) generated at GCD as a function
of flow 𝑄ℎ (in cfs) through power-generating turbines and reservoir elevation 𝐿 (feet above
mean sea level) (Waldo et al., 2021),

𝑀(𝑄ℎ, 𝐿) = 𝜎 ⋅ 𝑄ℎ ⋅ (𝐿 − 𝐿) . (20)

𝑄ℎ is assumed to be constant over an hourly time step ℎ. Because hourly flow through
the GCD is assumed to have negligible impact on reservoir elevation, 𝐿 is exogenous to
the contemporaneous hourly flow rate 𝑄ℎ. 𝐿 is further assumed to be constant within a
month, as elevation varies within tenths of a percent over this timeframe (Bureau of Recla-
mation, 2024). Energy generation is proportional to reservoir elevation above the tailwater
𝐿. Consequently, 𝜎 converts reservoir height to hydraulic pressure, which ensures the full
calculation produces a measure of energy (hydraulic pressure × total flow volume).

To identify optimal hourly energy generation over the planning horizon, we utilize the
following hydropower optimization model which follows Harpman (1999). Within each
month, an operator’s objective is to maximize the economic value of hydropower,

max
𝑄1,...,𝑄𝐻

∑
ℎ∈𝐻𝑚

𝑝ℎ ⋅ 𝑀 (𝑄ℎ, 𝐿) , (21)
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subject to several operational constraints,

∑ℎ∈𝐻𝑚
𝑄ℎ ≤ max monthly volume (cfs), for 𝑚 ∈ {May, June, July}

𝑄ℎ=𝑗 ≥ min off-peak flow, for 𝑗 ∈ off-peak hours
𝑄ℎ=𝑖 ≥ min on-peak flow, for 𝑖 ∈ on-peak hours

𝑄ℎ ≤ max flow
𝑄ℎ−1 − 𝑄ℎ ≤ max down ramp
𝑄ℎ − 𝑄ℎ−1 ≤ max up ramp

∣𝑄ℎ − 𝑄ℎ−𝑘∣ ≤ max flow change in 24 hours, for 𝑘 ∈ 24 hour period.

(22)

where 𝑝ℎ is the predicted hourly price ($/MWh) during each hour ℎ within a given monthly
window (𝐻𝑚). Since hydropower generated from the GCD constitutes less than 2% of the
generating capacity in the regions of the Western Electricity Coordinating Council where
it’s marketed, we assume the operator is a price-taker and considers the predicted prices
𝑝ℎ to be exogenous (EIA, 2023). We use historical Palo Verde hub prices to construct a
representative weekly price vector for May, June, and July, resulting in a range of hourly
prices for each month in which designer flows could take place.

Each designer flow in each month results in three consecutive days of high water re-
leases, followed by an abrupt decline to very low levels for six hours. When designer flows
are implemented, Equation 21 is thus subject to

𝑄ℎ =
⎧{
⎨{⎩

20000 cfs, if ℎ ∈ 𝐻ℎ𝑓
5000 cfs, if ℎ ∈ 𝐻𝑙𝑓 ,

⎫}
⎬}⎭

. (23)

where 𝐻ℎ𝑓 is the collection of “high flow” hours spanning 8:00 AM - 8:00 AM on the first
three weekdays of each month, and 𝐻𝑙𝑓 is the six hour “low flow” period following each
three day high flow event in each month. This “go high then low” strategy completes a
designer flow cycle, stranding trout on higher elevation gravel bars (Giardina et al., 2024).
This schedule contrasts a flow schedule prioritizing maximum energy value, which would
instead follow demand through the day, subject to operation constraints, maximizing flow
during early morning and late evening and minimizing flow during high renewable gen-
eration mid-day and lower night time demand.

We solve for the optimal release schedule with and without designer flow constraints.
The economic cost of implementing a designer flow is then the difference between the
economic value of hydropower generation under the optimal schedule with no designer
flow and the optimal schedule subject to designer flow constraints. Because peak energy
demand occurs in August—outside of the proposed designer flow schedule—additional
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generation capacity is available on the grid during designer flow implementation. Thus,
we characterize the opportunity cost of a designer flow as short-run, i.e., from paying an-
other available generator to supply the forgone energy generation rather than from build-
ing new energy generation capacity.

2.3 Adaptive management and experimentation

The use of designer flows to manage nonnative fish species is a recent innovation in
river management, and their efficacy is not well-studied in the Colorado River ecosystem.
Utilization of this tool will not only manage the system under study, but provide useful
information that can inform more efficient flow designs, reducing future program costs.

We extend our base model in Section 2.1—where beliefs about the designer flow effi-
cacy 𝜃𝐹 follow a given uniform distribution—to allow the true value of 𝜃𝐹 to be learned
at a date in the near future. We consider an active adaptive management strategy that
begins with a targeted learning procedure in the short term and then switches to a new
optimal policy conditional on newly-learned information concerning designer flow effi-
cacy. The cost of this adaptive management program can then be compared to the costs
of the optimal policy in the non-adaptive program that has no learning. The population
viability objective is still reached under the adaptive management program because it em-
ploys action more frequently than is necessary for short-run management. Thus, the only
meaningful difference between the two programs is their cost.

During the short-run learning phase, designer flows are used according to a prede-
termined learning regime (described below), and the nonflow action (removals) is not
used. This is sufficient to meet the viability objective, though at a higher cost than could
be achieved with a mix of the two control options. Upon discovery of the true designer
flow efficacy—stylized as a random draw from the 𝜃𝐹 distribution described in Section
2.1—the learning-savvy environmental manager calculates the optimal policy for the next
management phase by solving Program 16. The total program cost, given new information
arriving in year 𝑇𝐿, is

𝐶(𝑇𝐿) =
𝑇𝐿

∑
𝑡=0

𝛽𝑡 ⋅ 𝑐𝐹𝐹𝑡 + 𝛽𝑇𝐿+1 ⋅ 𝐶𝐿, (24)

where the summation captures total costs during the learning stage and the second term
provides the present discounted value of future costs, 𝐶𝐿, i.e., the expected costs of an
updated optimal program from year 𝑇𝐿 that accounts for the new information. The con-
tinuation value 𝐶𝐿 is calculated using iterated expectations. That is, we first calculate
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the expected long-run costs of the post-learning optimal policy under each potential true
value of 𝜃𝐹 that the manager could observe, then calculate the expectation of these condi-
tional expected costs over the 𝜃𝐹 distribution.

We consider two types of learning regimes, indexed by 𝑅: (1) a designer flow is imple-
mented only in select high trout recruitment years (defined as an event above the 1 − 𝜙
percentile; 𝑅 = 𝑠𝑒𝑙𝑒𝑐𝑡), or (2) a designer flow is implemented in all years (𝑅 = 𝑎𝑛𝑛𝑢𝑎𝑙).
The probability of a high recruitment event, 𝜙, defines a threshold recruitment event size,
above which the signal from a single designer flow experiment is notably stronger (Yack-
ulic et al., 2018a). The probability of learning the true value of 𝜃𝐹 each year a designer
flow is implemented is denoted by 𝜋. We consider this as the probability that stakehold-
ers find that a given experiment establishes sufficient confidence in the current estimate of
𝜃𝐹, which we take to be the inverse frequency of past experimental efforts (Yackulic et al.,
2024).

The viability objective is met under both of these learning regimes, but the more ag-
gressive annual flow regime results in higher chub abundances and lower trout abun-
dances over a similar period of implementation. The less aggressive select regime that
utilizes fewer experiments is less costly in the learning phase on average, but the lower
number of observed designer flows results in slower learning and later adoption of an
informed policy post-learning.

The expected cost of the learning program, conditional on 𝜙, 𝑇𝐿 and 𝑅, is

𝐶(𝑇𝐿|𝑅) =
𝑇𝐿

∑
𝑡=0

𝛽𝑡 ⋅ 𝜙1(𝑅=𝑠𝑒𝑙𝑒𝑐𝑡) ⋅ 𝑐𝐹 + 𝛽𝑇𝐿+1 ⋅ 𝐶𝐿

= 𝜙1(𝑅=𝑠𝑒𝑙𝑒𝑐𝑡) ⋅ 1 − 𝛽𝑇𝐿+1

1 − 𝛽 ⋅ 𝑐𝐹 + 𝛽𝑇𝐿+1 ⋅ 𝐶𝐿, (25)

which assumes that under the select regime the chance of a designer flow in each period is
independent of previous decisions (i.e., that recruitment is not an autocorrelated process).

The learning stage continues until the true designer flow efficacy is discovered. The
likelihood of learning (successful discovery) in a single period is given by

𝑝𝑅 = 𝜙1(𝑅=𝑠𝑒𝑙𝑒𝑐𝑡) ⋅ 𝜋 . (26)

The probability that the manager learns for the first time in year 𝑇𝐿 is determined by
calculating the likelihood of failing to learn in every year before 𝑇𝐿, multiplied by the
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likelihood in learning in period 𝑇𝐿:

𝑃(𝑇𝐿|𝑅) = (1 − 𝑝𝑅)𝑇𝐿 ⋅ 𝑝𝑅 . (27)

With either learning strategy, the time to learning is distributed geometrically, and the
expected learning time will be longer for the 𝑅 = 𝑠𝑒𝑙𝑒𝑐𝑡 regime. If the continuation value
𝐶𝐿 is not state-dependent (which we relax in Section 3.4), the expected cost of the learning
program is

𝐸 [𝐶(𝑇𝐿|𝑅)|𝑅] =
∞
∑

𝑇𝐿=0
𝑃(𝑇𝐿|𝑅) ⋅ 𝐶(𝑇𝐿|𝑅)

= 𝜙1(𝑅=𝑠𝑒𝑙𝑒𝑐𝑡) ⋅ 𝑐𝐹
1 − 𝛽 − 𝑝𝑅 ⋅ 𝛽

1 − 𝛽 + 𝑝𝑅 ⋅ 𝛽 ⋅ ⎛⎜
⎝

𝜙1(𝑅=𝑠𝑒𝑙𝑒𝑐𝑡) ⋅ 𝑐𝐹
1 − 𝛽 − 𝐶𝐿⎞⎟

⎠
. (28)

Equation 28 illustrates that, regardless of the learning regime, the expected cost above
equals the perpetuity cost of staying in the learning phase forever, minus the expected
discounted long-run savings from leaving it.

3 The value of designer flows

In this section, we identify optimal management for the Colorado River ecosystem to
achieve a population viability goal under multiple scenarios. In our baseline model (Sec-
tion 3.1), the manager observes only adult chub and trout populations and does not ob-
serve juvenile chub and trout recruitment or designer flow efficacy. In this case, designer
flows are rarely used due to (1) uncertainty in their efficacy given the unknown contempo-
rary level of trout recruitment and (2) the delayed effect of designer flows on downstream
trout recruitment in subsequent years.

We then make two changes to the biological model to understand whether the initial
undesirability of the designer flow action is robust. First, we allow the manager to observe
trout recruitment via monitoring (Section 3.2). As expected, we find that designer flow use
is highly sensitive to the level of current trout recruitment. Further, the use of designer
flows is preferred to nonflow action in periods of heavy trout recruitment and low imme-
diate predation pressure on chub downstream. The allowance for informed designer flow
use lowers total costs, although not dramatically, as designer flows are still infrequently
prescribed. Second, we adjust the model to account for a new, more effective predator
(Section 3.3). We demonstrate that the designer flow policy (and prior preference for the
nonflow action) is sensitive to the specifics of the invading species’ demography and the
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strength of interspecific interactions.
Finally, we evaluate the gains from active adaptive management. In the above simula-

tions, 𝜃𝐹 is an unknown parameter with a given distribution. In Section 3.4, we allow this
parameter to be determined with perfect precision after an uncertain number of experi-
mental designer flow regimes. We show that employing a learning strategy that facilitates
short-run designer flow experimentation yields potential improvements in long-run cost-
effectiveness over the no-learning scenario, conditional on future energy prices.

3.1 Designer flow use is rarely a cost-effective choice without trout re-
cruitment monitoring

In our baseline scenario, our manager observes and responds to adult populations of
both chub and trout, and recruitment of either species is not observed. By happenstance,
both the designer flow and nonflow management actions have similar contemporary per-
action costs in practice (Table A1). In Figure 2, we show the policy function, which, con-
ditional on adult trout abundances upstream (vertical axes) and downstream (horizontal
axes), presents the adult chub abundance threshold below which it is optimal to use de-
signer flows (2A) and/or the nonflow action (2B). In the white (non-shaded) region, it is
never optimal to employ the management action; that is, there is no chub population above
the chub viability threshold (4,000) for which it is optimal to take the action. Darker shades
indicate that even for high chub abundances, action is still optimal. Lighter shades imply
a more stringent threshold for action (i.e., the chub population falling below a smaller
level). For example, in the top right corner—at maximum abundances of both upstream
and downstream adult trout—it is optimal to employ the nonflow action whenever chub
abundance falls below 9,500 and, in addition, designer flows when chub abundance dips
under 6,000. As might be expected, chub thresholds are lower when trout abundances are
lower and higher when trout abundances are higher.

The impact of any designer flow action is not immediately known in the baseline sce-
nario. Without the monitoring of trout recruitment—the sub-population impacted by de-
signer flows—the timing of designer flows cannot be selectively implemented when they
would have maximum impact (in high recruitment years) and avoided when they would
have minimum impact (in low recruitment years). Because of this, nonflow actions are
predominantly used instead of designer flows (Figure 2), as the nonflow action is suffi-
cient for maintaining chub viability on its own (Appendix B). Designer flows are entirely
avoided except in dire situations and are always accompanied by nonflow action, show-
ing that they are not cost-effective to apply on their own. The optimal policy illustrates
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Figure 2: Optimal control policy representing the threshold chub abundance (shading) below
which (A) designer flows and (B) nonflow actions are used, as a function of the adult trout abun-
dances upstream (vertical axes) and downstream (horizontal axes). The shading indicates the high-
est chub population where action is undertaken.

that designer flows only contribute to cost-effective chub viability when the chub abun-
dance is very low and the trout abundance is very high. However, as we show next, such
a situation is quite unlikely to occur if a manager is operating under this optimal policy.

Figure 3 shows the probability mass function for adult chub, upstream adult trout, and
downstream adult trout populations after 𝑇 = 20 years under optimal management. The
chub population persists in numbers well above the population viability target thresh-
old (𝑌 = 4, 000), and trout abundance is relegated to relatively low levels. The primary
implication of Figure 3 is that under optimal management, both actions are infrequent—
particularly designer flows, as mentioned above. For example, even for high trout pop-
ulations, designer flows aren’t employed until the chub population falls below an abun-
dance of 6,000 (Figure 2A). This occurs rarely under optimal management, less than seven
percent of the time (Figure 3A). Ultimately, this result is driven by the large and lasting
impact that either management action has on chub and trout populations. Once action is
undertaken, it takes several years, on average, before the next action is warranted.

While designer flows alone are sufficient for achieving viability (Appendix B), they are
rarely employed relative to the nonflow action because of the uncertainty in their efficacy
without monitoring and their delayed conservation effect on the downstream chub popu-
lation. As such, the availability of designer flows does not generate a meaningful decrease
in operating costs, as the rarely-visited states that use designer flows do not contribute sig-
nificantly to the expected present cost calculation. However, pairing designer flows with
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A 20-year downstream distribution
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Figure 3: Probability mass function resulting from the optimal policy in the baseline scenario for
(A) chub and downstream trout and (B) upstream and downstream trout. The omitted state vari-
able in either panel is held at its 20-year modal value.

trout recruitment monitoring or improvements in design flow efficiency have the potential
to qualify these conclusions. The next two sections extend the baseline model to account
for these two features to determine if a savvier manager could make more effective and
frequent use of designer flows.

3.2 Designer flow use is highly sensitive to trout recruitment

Without monitoring trout recruitment, our manager lacks important ecological infor-
mation when determining whether designer flows will be effective in a given year, thereby
eschewing this tool in most circumstances. Our study system exhibits large variability in
trout recruitment, which can be monitored with dedicated agency effort. When monitor-
ing is available in our model, these observations result in a designer flow policy that is
highly sensitive to recruitment and used across a much wider range of species abundance
circumstances, thus improving conditions downstream in future years and reducing the
need for nonflow actions.

When informed by trout recruitment monitoring, our policy becomes a function of four
state variables, including trout recruitment, upstream adult trout, and downstream adult
trout and chub. The recruitment-naïve planner in our baseline model faced a distribution
of recruitment outcomes which only resolved once adult trout populations were observed
in subsequent years upstream and downstream. In contrast, the recruitment-informed
manager is able to leverage trout recruitment abundance information one full year earlier
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while designer flows can still have an impact on the recruits.
We show the recruitment-informed designer flow policy in Figure 4, which has been

modified from the policy function in Figure 2 to account for the extra state variable. Figure
4 shows the policy for two different levels of chub while the response to the new state
variable, trout recruitment, is given by the color shading. When trout recruitment is above
the level indicated by the color bar, designer flows are optimal.

The designer flow policy is highly sensitive to trout recruitment: when designer flows
are optimal, recruitment is typically quite high, and this recruitment threshold decreases
as the adult trout population increases or the chub population decreases, all else equal.
Lighter colors signify that action is needed even after low recruitment events. The gray
region of the state space shows where recruitment does not trigger a flow, given the state
of the other three populations.

A Designer flow policy (low chub)
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B Designer flow policy (high chub)
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Figure 4: Optimal designer flow policy when trout recruitment is observed.

We find that the policy in Figure 4 results in the same abundance density as Figure
3. This implies that the recruitment-informed manager still uses designer flows at a very
low rate. Further, the recruitment-informed nonflow policy responds only slightly to re-
cruitment information (Appendix C). This is not surprising given that observations of the
adult nonnative population in later years embody all of the relevant information from an
earlier recruitment event. Because the nonflow policy does not noticeably relax, even in
periods with low immediate survival pressure on the chub population and extraordinary
trout recruitment (the case least addressed by the nonflow action), the expected operat-
ing costs are not meaningfully lowered with the inclusion of upstream trout recruitment
monitoring. If we were to relax our assumption that monitoring costs are negligible, the
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net value of monitoring would fall further.
While the recruitment information facilitates the selective use of designer flows, down-

stream actions can still be delayed for several years and produce similarly effective control,
thereby reducing the present value of operational costs through a discounting effect. Fur-
ther, the nonflow action impacts both established trout populations downstream as well
as new migrants. Therefore, the nonflow action can be delayed until predation pressure
becomes too large to ignore, while the designer flow option loses its efficacy the moment
trout migrate away from the reach immediately downstream of the dam.

Next, we consider two extensions under which designer flow use might become more
favorable. The first extension addresses a recent and substantial increase in predation
pressure on the chub population from a nonnative brown trout population (Section 3.3).
The second involves improving the designer flow schedule through active adaptive man-
agement, whereby a costly short-run learning regime reveals the true designer flow effi-
cacy parameter and can potentially discover a more cost-effective designer flow schedule
(Section 3.4).

3.3 Anticipated changes to predation pressure in the ecological system
will promote use of designer flows

Changing environmental conditions in the Colorado River have led to the establish-
ment and recruitment of a nonnative brown trout population. Despite their lower num-
bers, brown trout are much more piscivorous, with approximately a seven-fold greater
per-capita impact on the chub population relative to rainbow trout (Runge et al., 2018;
Yackulic et al., 2018a). This section tests the sensitivity of the above results to a critical
new development in the ecology of the Colorado River.

We make three changes to our model. First, we replace rainbow trout with brown trout.
Second, brown trout recruitment is only 10% as large as that of rainbow trout, leading
to lower populations all along the river. Third, brown trout have a higher survival rate
each year, which means increases in the adult population persist longer without active
management. It is assumed that designer flow efficacy, movement rates, and nonflow
capture probability for brown trout are similar to that of rainbow trout.

Figure 5 summarizes the optimal policy and long run population abundances resulting
from this updated brown trout management policy under the assumption of upstream re-
cruitment monitoring (which is currently active for brown trout). Panels A through D ex-
hibit some of the same management patterns as seen previously: the designer flow policy
reacts strongly to brown trout recruitment, while the nonflow policy does not. However,
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we see that the nonflow policy has been reduced in cases where designer flows have been
prescribed. This is due to the increased natural survival of brown trout, which reduces
the power of the nonflow delay option described in Section 3.2. Therefore, there is a shift
towards earlier reduction of brown trout compared to rainbow trout. Panel E shows that
the resulting density for the humpback chub is similar to before, which is to be expected
given that the viability objective has not changed. Panels E and F together imply that
designer flows are used much more frequently relative to the rainbow trout-dominated
system, about every other year.

3.4 Designer flow experimentation may be profitable, conditional on
efficacy improvements and favorable energy cost projections

As designer flows are an emerging management strategy in our system under study,
we have limited knowledge concerning their true efficacy. Experimentation in the short-
run allows a manager to determine their efficacy with greater confidence. This section
integrates the adaptive management model in Section 2.3 with the bioeconomic model in
Section 2.1 and determines the economic conditions necessary to justify a short-run exper-
imental regime to develop a better understanding of designer flow efficacy. We apply this
adaptive management approach to the brown trout-dominated system with recruitment
monitoring, which has a greater need for contemporary designer flow use that may justify
experimentation with the promise of future program efficiency gains.

Under active adaptive management, the manager now has the option to employ one
of two short-run learning strategies: a more aggressive approach that simply implements
an experiment (designer flow) every year and a less aggressive approach that implements
an experiment only when the strength of the designer flow effect signal is highest (which
occurs when brown trout recruitment is high). In either case, we assume that the nonflow
action is suspended during the learning stage (due to a budget constraint, for instance).
Each experiment poses an opportunity to gain sufficient confidence about the true effi-
cacy, and upon such a realization, the learning stage ends, and a new optimal schedule is
designed using the new information. Total costs are calculated by summing the expected
costs during the learning stage and the expected continuation costs over the distribution
of the true designer flow efficacy (𝜃𝐹) and the population state density at the beginning
of the post-learning stage given the number of designer flows implemented in the learn-
ing stage. This admits a time-sensitive and state-dependent continuation cost, 𝐶𝐿, which
allows us to compare the total costs of the two learning regimes.

Given the significant increase in energy prices in recent years, we consider how this
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C Nonflow policy (low recruitment)
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Figure 5: Optimal policies and resulting population densities for the case of brown trout.
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value of information changes with respect to changing opportunity costs of hydropower.
For example, relative to 2020, energy prices at the Palo Verde hub were 162% and 256%
higher in 2021 and 2022, respectively, for the months of May-July (California Independent
System Operator, 2024). We use this range of prices to determine a range of plausible
opportunity costs of implementing designer flow experiments.

Figure 6 presents the expected program costs for the non-learning scenario, the less ag-
gressive “high recruitment” experimental regime, and the more aggressive “annual flow”
experimental regime. Here, there is significant sensitivity to the opportunity costs of de-
signer flows, and energy costs must fall to 2020 levels in order for the learning regime to
produce positive expected net benefits. On this low end of the future energy cost range
($250-350k), the less aggressive experimental regime can promote early adoption of de-
signer flows even when a management plan with lower short-run costs under current and
fixed information (the non-learning approach) is available. For all regimes, these lower op-
portunity costs result in higher designer flow use, which begins to lower the management
costs even in the non-learning case. However, lower opportunity costs have a greater effect
on the learning regimes, owing to the reduction of the immediate cost of experimentation.
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Figure 6: Expected management costs as a function of designer flow opportunity costs under the
no learning program and two alternative learning programs.

We find, trivially, that aggressive learning produces a net loss in all scenarios con-
sidered, although for the lowest flow cost, this loss is approaching zero. This is because
the additional designer flow activity in the learning stage is excessive, as earlier experi-
ments have already brought the system into a state that is favorable to the manager. Thus,
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further experimentation does not lower continuation costs because this provides mini-
mal ecological benefit in the post-learning stage. Because urgent, repeated contemporary
management is not needed during the learning stage, and because both regimes will pro-
duce similarly low present-valued continuation costs (given liberal application of designer
flows in either case), the high upfront costs of the more aggressive regime are not justified.

In summary, only the less aggressive learning regime that waits for periods of high
brown trout recruitment before employing experimental designer flows can be justified: if
future energy costs are not expected to increase dramatically, the less aggressive learning
regime generates a net benefit relative to a policy that does not employ learning. The
optimal contemporary program that manages brown trout costs $1.6M in present valued
terms, and potential cost savings from the less aggressive learning regime are 7.5% and
23% of this figure when per flow cycle opportunity costs are $350k and $250k, respectively.
These gains are relatively large, but small in absolute terms (and relative to the cost of
any one management action) due to the lasting impact of a single designer flow. These
results suggest that the learning regime could be pursued for little-to-no additional cost
relative to the non-learning policy. Given that designer flow efficacy knowledge is useful
for ongoing management—and potentially for other systems—these results suggest that
an experimental learning regime would be valuable.

4 Discussion

Designer flows are a promising and increasingly utilized approach to improve ecosys-
tem function and services in dam-regulated rivers, yet we still have a limited understand-
ing of their tradeoffs when attempting to balance economic and conservation objectives.
One prominent omission from previous studies is the opportunity cost of designer flows,
i.e., the foregone benefits that would have been achieved in their absence. Another is
the value of new information on the efficacy of designer flows in a given environment
generated by active experimentation. While including such elements is critical for under-
standing whether, when, and how designer flows should be implemented, they are diffi-
cult to evaluate given the complexities of formulating integrated assessment models that
consider economic and conservation objectives, the ecosystem functions of downstream
rivers, and the value of information from active learning through experimentation.

In this article, we demonstrate how to perform an integrated assessment of designer
flow implementation for achieving a conservation objective in a shadow value viability
(SVV) framework. To our knowledge, this application to the Glen Canyon Dam on the
Colorado River is the first economic analysis of designer flows to incorporate the oppor-

22



tunity costs of foregone hydropower electricity generation. We also show how the SVV
approach can be extended to explore adaptive management to address the fact that un-
certainty and learning over time are key realities of natural resource management.

Our baseline model results (without monitoring or learning) show that designer flows
are prohibitively expensive for managing rainbow trout populations when other nonflow
actions, such as downstream trout removal, are available. This occurs, in part, due to the
delayed and thus discounted benefits of designer flows, but also due to three other model
features, which we explore further. First, implementing rainbow trout recruitment moni-
toring facilitates targeting designer flows to high recruitment years, boosting effectiveness
and thus the range of conditions in which this action is efficient to use. Second, when
the need arises to control a much more piscivorous predator (brown trout), this elevated
threat to vulnerable humpback chub warrants expanded use of designer flows. Finally,
we show that as long as the flow costs from forgone energy generation are not too high,
an active adaptive management strategy of experimentation in high recruitment years to
learn about designer flow efficacy is preferred to a non-learning approach.

Our approach demonstrates how essential economic and ecosystem features can be
combined to evaluate conservation actions in dam-regulated rivers. We have identified
several critical system characteristics for predicting whether there may be a benefit of de-
signer flow implementation in other settings. However, new prescriptions will still be
context-specific and require a detailed understanding of the fundamental mechanisms
that drive system behavior. Our study draws from considerable experience working with
managers, scientists, and stakeholders of the Glen Canyon Dam system. Successfully
adapting our approach for environmental decision-making in other dam-regulated sys-
tems will largely depend on the meaningful involvement of stakeholders and their recog-
nition of the value of the modeling effort (Horne et al., 2016).

Future changes to the Colorado River will continue to shape optimal dam manage-
ment. Nonstationarities in both climate and economic systems present new challenges for
the river’s ecology. For example, if federal hydropower shifts to a larger role in balanc-
ing electricity sector grid resources, our results suggest that the designer flow option may
become cost-prohibitive. This possibility strengthens the need to consider environmen-
tal flows and power capacity expansion objectives jointly along with other regional-scale
socio-economic values. The change may require the consideration of co-benefits, such as
those derived from sediment transport or recreational fishery improvements, to justify
designer flow use.

The operational flexibility of dams provides a unique opportunity to respond to oth-
erwise deleterious developments (Bair et al., 2019). For example, smallmouth bass (Mi-
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cropterus dolomieu), a warm-water nonnative species, have proliferated upstream of Glen
Canyon Dam. Lower reservoir elevations due to historically low flows in the Colorado
River have allowed this species to migrate through the hydropower inlets at Glen Canyon
Dam (Eppehimer et al., 2024), however, thoughtful departures from normal operation of
the dam can protect the health of downstream species. Dam operators have the option to
send a share of downstream water allocations through bypass tubes—which do not gen-
erate electricity or facilitate smallmouth bass migration. This process also reduces down-
stream temperatures which inhibits smallmouth bass growth. While this alternative flow
design comes at great opportunity cost to hydropower generation, it can strengthen en-
vironmental protection within the socio-ecological system as drought conditions become
more common and hydrological variability increases.

Designer flows show significant promise. Indeed, dam infrastructure on regulated
rivers is constructed for several reasons unrelated to ecosystem viability, including hy-
dropower electricity generation, reduced flood risk, and consistent water supply. While
large dams have already caused significant changes to the world’s river basins in pursuit of
meeting these objectives, their creative and flexible operation can provide a cost-effective
tool for maintaining ecosystem viability.
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A Numerical specification of the bioeconomic model

Table A1: Parameter definitions with values and sources.

Parameter Description Value Source
𝛼𝑤, 𝜅𝑤 stochastic trout recruitment bounds 11,14 (Korman et al., 2012)
𝛼𝑦, 𝜅𝑦 stochastic chub recruitment bounds 4000, 35000 (U.S. Department of the

Interior, 2016)
𝜓𝑥 trout movement rate: MC to JCMR 0.009 (Korman et al., 2015)
𝜓𝑦 share of chub recruits to JCMR 0.1 (Yackulic et al., 2014)
𝜓𝑤 share of trout recruits to MC 0.1735 (Korman et al., 2015)
𝛾𝑥, 𝛾𝑤 adult trout survival after natural mortality 0.61 (0.69) (Korman et al., 2015)
𝛾𝑦 adult chub survival after natural mortality 0.83 (Yackulic et al., 2014)
𝑐𝐴 cost of [five] trout removal trips $450K (Bair et al., 2018)
𝑐𝐹 cost of designer flow $250K-$650K Modeled
𝜃𝐴 nonflow action efficacy 0.28 (Korman et al., 2012)
𝜃𝐹 designer flow efficacy bounds 0.1 - 0.5 (Korman et al., 2012)
𝜇, 𝜆 trout viability effects (monthly) 5, -0.0009 (-0.0063) (Yackulic et al., 2018b)
𝑇 viability time horizon 20 years (U.S. Department of the

Interior, 2016)
𝜎 energy conversion factor 0.0000744

𝑀𝑊ℎ/𝑐𝑓 𝑠 ⋅ 𝑓 𝑡
(Waldo et al., 2021)

𝐿 reservoir elevation 3575 ft (Waldo et al., 2021)
𝐿 tailwater elevation 3177 ft (Waldo et al., 2021)
𝜙 probability of high trout recruitment 0.25 (Yackulic et al., 2018a)
𝜋 probability of learning event 0.33 Chosen
𝛽 discount factor 0.97 (Donovan et al., 2019)
𝑌 lower abundance limit of chub 4000 (Donovan et al., 2019)
𝛥 viability confidence 0.90 (Donovan et al., 2019)

Notes: Where rainbow and brown trout dynamics differ, we place the brown trout parameter in parentheses.
In our non-learning simulations, designer flow costs are $450,000. 𝜋, 𝛽, 𝑌, and 𝛥 are policy parameters
chosen to reflect stakeholder concerns and knowledge. The discount factor and viability goal parameters
are chosen to be consistent with (Donovan et al., 2019).
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B Substitutability of designer flow and nonflow actions

A Designer flow policy
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Figure A1: A: designer flow policy when non-flow action isn’t available. B: nonflow policy when
designer flows aren’t available. Either policy is sufficient on its own for achieving the joint abun-
dance distribution in Figure 3, although the designer flow policy is more costly (and thus not cho-
sen in Figure 2).

C Nonflow policy response to upstream monitoring
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B Nonflow policy (high recruitment)
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Figure A2: Nonflow policy conditional on the observation of upstream trout recruitment.
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